目录
表现比肩全监督方式
学习分两阶段进行
阶段一:片段级判别学习
阶段二:实例级完整性学习
首页 科技周边 人工智能 单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

Jan 11, 2024 pm 10:39 PM
ai 训练

如何从一段视频中找出感兴趣的片段?时序行为检测(Temporal Action Localization,TAL)是一种常用方法。

利用视频内容进行建模之后,就可以在整段视频当中自由搜索了。

而华中科技大学与密歇根大学的联合团队最近又为这项技术带来了新的进展——

过去TAL中的建模是片段甚至实例级的,而现在只要视频里的一帧就能实现,效果媲美全监督。

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

来自华中科技大学的团队提出了一种名为HR-Pro的新框架,用于点标注监督的时序行为检测。

通过多层级的reliability propagation,HR-Pro可以网络学习到更具辨别力的片段级特征和更可靠的实例级边界。

HR-Pro由两个可靠性感知的阶段组成,它能够有效地从片段级别和实例级别的点标注中传播高置信度的线索,从而使网络学习到更具区分性的片段表示和更可靠的提议。

在多个基准数据集上进行的实验表明,HR-Pro优于现有方法,结果最先进,证明了其有效性和点标注的潜力。

表现比肩全监督方式

下图展示了HR-Pro与LACP在THUMOS14测试视频上进行时序行为检测表现比较。

HR-Pro展现出更了准确的动作实例检测,具体来说:

  • 对于“高尔夫挥杆”行为,HR-Pro有效地区分了行为和背景片段,减轻了LACP难以处理的False Positive预测;
  • 对于铁饼投掷行为,HR-Pro检测到比LACP更完整的片段,后者在非区分性动作片段上具有较低的激活值。

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

数据集上的测试结果,也印证了这一直观感受。

将THUMOS14数据集上的检测结果可视化后可以观察到,在实例级别完整性学习之后,高质量预测和低质量预测之间的差异显著增大。

(左侧是实例级别完整性学习之前的结果,右侧是学习之后的结果。横轴和纵轴分别表示时间和可靠性分数。)

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

整体来看,在常用4个数据集中,HR-Pro的性能均大幅超越最先进的点监督方法,在THUMOS14数据集上的平均mAP达到60.3%,相较之前的SoTA方法(53.7%)的提升为6.5%,并且能与一些全监督方法达到相当的效果。

在THUMOS14测试集上与下表中的先前最先进方法相比,对于IoU阈值在0.1到0.7之间,HR-Pro的平均mAP为60.3%,比先前最先进方法CRRC-Net高6.5%。

并且HR-Pro能够与具有竞争力的全监督方法达到相当的表现,例如AFSD(对于IoU阈值在0.3到0.7之间,平均mAP为51.1% vs. 52.0%)。

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

△HR-Pro与前SOTA方法在THUMOS14数据集上的对比

在各种基准数据集上的通用性和优越性方面,HR-Pro也明显优于现有方法,在GTEA、BEOID和ActivityNet 1.3上分别取得了3.8%、7.6%和2.0%的提高。

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

△HR-Pro与前SOTA方法在GTEA等数据集上的对比

那么,HR-Pro具体是如何实现的呢?

学习分两阶段进行

研究团队提出了多层级可靠传播方法,在片段级引入可靠片段记忆模块并利用交叉注意力的方法向其他片段传播,在实例级提出基于点监督的提议生成来关联片段和实例,用于产生不同可靠度的proposals,进一步在实例级优化proposals的置信度和边界。

HR-Pro的模型结构如下图所示:时序行为检测被划分为两阶段的学习过程,即片段级别的判别性学习实例级别的完整性学习

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

阶段一:片段级判别学习

研究团队引入可靠性感知的片段级判别学习,提出为每个类别存储可靠原型,并通过视频内和视频间的方式将这些原型中的高置信度线索传播到其他片段。

片段级可靠原型构建

为了构建片段级别的可靠原型,团队创建了一个在线更新的原型memory,用于存储各类行为的可靠原型mc(其中 c = 1, 2, …, C),以便能够利用整个数据集的特征信息。

研究团队选择了具有点标注的片段特征初始化原型:

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

接下来,研究人员使用伪标记的行为片段特征来更新每个类别的原型,具体表述如下:

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

片段级可靠性感知优化

为了将片段级可靠原型的特征信息传递到其他片段,研究团队设计了一个Reliabilty-aware Attention Block(RAB),通过交叉注意力的方式实现了将原型中的可靠信息注入到其他的片段中,从而增强片段特征的鲁棒性,并增加对较不具有判别力片段的关注。

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

为了学习到更加具有判别里的片段特征,团队还构建了可靠性感知的片段对比损失:

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

阶段二:实例级完整性学习

为了充分探索实例级别行为的时序结构并优化提议的得分排名,团队引入了实例级别的动作完整性学习。

这种方法旨在通过可靠的实例原型的指导,通过实例级别的特征学习来精化提议的置信度得分和边界。

实例级可靠原型构建

为了在训练过程中利用点标注的实例级别先验信息,团队提出了一种基于点标注的提议生成方法用于生成不同Reliability的proposals。

根据其可靠性分数和相对点标注的时序位置,这些提议可以分为两种类型:

  • 可靠提议(Reliable Proposals, RP):对于每个类别中的每个点,提议包含了这个点,并具有最高的可靠性;
  • 正样本提议(Positive Proposals, PP):所有其余的候选提议。

为确保正样本和负样本数量平衡,研究团队将那些具有类别无关的注意力分数低于预定义值的片段分组为负样本提议(Negative Proposals, NP)。

实例级可靠性感知优化

为了预测每个提议的完整性分数,研究团队将敏感边界的提议特征输入至得分预测头φs:

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

然后用正/负样本提议与可靠提议的IoU作为指导,监督提议的完整性分数预测:

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

为了获得更准确边界的行为proposal,研究者将每个PP中的proposal的起始区域特征和结束区域特征输入到回归预测头φr中,以预测proposal开始和结束时间的偏移量。

进一步计算得到精细化的proposals,并希望精细化后的proposals与可靠proposal重合。

单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA
单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA
单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA

总之,HR-Pro只需很少的标注就能很好的效果大幅度降低了获取标签的成本,同时又拥有较强的泛化能力,为实际部署应用提供了有利条件。

据此,作者预计,HR-Pro将在行为分析、人机交互、驾驶分析等领域拥有广阔的应用前景。

论文地址:https://arxiv.org/abs/2308.12608

以上是单帧标注视频就能学到片段特征,达到全监督性能!华科拿下时序行为检测新SOTA的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

WorldCoin(WLD)价格预测2025-2031:到2031年WLD会达到4美元吗? WorldCoin(WLD)价格预测2025-2031:到2031年WLD会达到4美元吗? Apr 21, 2025 pm 02:42 PM

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

跨链交易什么意思?跨链交易所有哪些? 跨链交易什么意思?跨链交易所有哪些? Apr 21, 2025 pm 11:39 PM

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

如何在币安拿下 KERNEL 空投奖励 全流程攻略 如何在币安拿下 KERNEL 空投奖励 全流程攻略 Apr 21, 2025 pm 01:03 PM

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。

对于加密货币行业来说,'黑色星期一抛售”是艰难的一天 对于加密货币行业来说,'黑色星期一抛售”是艰难的一天 Apr 21, 2025 pm 02:48 PM

加密货币市场暴跌引发投资者恐慌,Dogecoin(Doge)成为重灾区之一。其价格大幅下挫,去中心化金融(DeFi)总价值锁定(TVL)也出现显着下降。 “黑色星期一”的抛售潮席卷加密货币市场,Dogecoin首当其冲。其DeFiTVL跌至2023年水平,币价在过去一个月内下跌23.78%。 Dogecoin的DeFiTVL降至272万美元的低点,主要原因是SOSO价值指数下跌26.37%。其他主要DeFi平台,如无聊的Dao和Thorchain,TVL也分别下降了24.04%和20.

Aavenomics是修改AAVE协议令牌并介绍令牌回购的建议,已达到法定人数 Aavenomics是修改AAVE协议令牌并介绍令牌回购的建议,已达到法定人数 Apr 21, 2025 pm 06:24 PM

Aavenomics是修改AAVE协议令牌并引入令牌回购的提议,已为AAVEDAO实现了一个法定人数。AAVE连锁计划(ACI)创始人马克·泽勒(MarcZeller)在X上宣布了这一点,并指出它标志着该协议的新时代。AAVE连锁倡议(ACI)创始人MarcZeller在X上宣布,Aavenomics提案包括修改AAVE协议令牌和引入令牌回购,已为AAVEDAO实现了法定人数。根据Zeller的说法,这标志着该协议的新时代。AaveDao成员以压倒性的投票支持该提议,即在周三以每周100

币圈杠杆交易所排名 币圈十大杠杆交易所APP最新推荐 币圈杠杆交易所排名 币圈十大杠杆交易所APP最新推荐 Apr 21, 2025 pm 11:24 PM

2025年在杠杆交易、安全性和用户体验方面表现突出的平台有:1. OKX,适合高频交易者,提供最高100倍杠杆;2. Binance,适用于全球多币种交易者,提供125倍高杠杆;3. Gate.io,适合衍生品专业玩家,提供100倍杠杆;4. Bitget,适用于新手及社交化交易者,提供最高100倍杠杆;5. Kraken,适合稳健型投资者,提供5倍杠杆;6. Bybit,适用于山寨币探索者,提供20倍杠杆;7. KuCoin,适合低成本交易者,提供10倍杠杆;8. Bitfinex,适合资深玩

混合型区块链交易平台有哪些 混合型区块链交易平台有哪些 Apr 21, 2025 pm 11:36 PM

选择加密货币交易所的建议:1. 流动性需求,优先选择币安、Gate.io或OKX,因其订单深度与抗波动能力强。2. 合规与安全,Coinbase、Kraken、Gemini具备严格监管背书。3. 创新功能,KuCoin的软质押和Bybit的衍生品设计适合进阶用户。

虚拟币价格上涨或者下降是为什么 虚拟币价格上涨或者下降的原因 虚拟币价格上涨或者下降是为什么 虚拟币价格上涨或者下降的原因 Apr 21, 2025 am 08:57 AM

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

See all articles