减少Transformer秩数以提高性能,同时保持移除特定层90%以上组件LLM不减少
麻省理工学院和微软进行了联合研究,发现不需要额外的训练即可提升大型语言模型的任务性能,并减小其大小
在大型模型时代,Transformer以其独特的能力支撑起整个科研领域。自推出以来,基于Transformer的语言模型(LLM)在各种任务中展现出卓越的性能。Transformer的底层架构已成为自然语言建模和推理的最先进技术,并在计算机视觉和强化学习等领域展现出强大的前景
然而,当前 Transformer 架构非常庞大,通常需要大量计算资源来进行训练和推理。
这样重写:这样做是有意义的,因为经过更多参数或数据训练的Transformer显然比其他模型更有能力。然而,越来越多的研究表明,基于Transformer的模型和神经网络不需要保留所有适应参数来保持其学习到的假设
一般而言,在训练模型时,过度参数化似乎很有帮助,但这些模型在推理之前可以进行大幅剪枝。有研究表明,神经网络通常可以去除90%以上的权重,而性能不会有任何显著下降。这一现象引发了研究者对于有助于模型推理的剪枝策略的研究兴趣
来自 MIT、微软的研究者在论文《 The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction 》中提出了一个令人惊讶的发现,即在 Transformer 模型的特定层上进行仔细的剪枝可以显著提高模型在某些任务的性能。
请点击以下链接查看论文:https://arxiv.org/pdf/2312.13558.pdf
论文主页:https://pratyushasharma.github.io/laser/
该研究将这种简单的干预措施称为LASER(层选择性降秩),通过奇异值分解有选择地减少Transformer模型中特定层的学习权重矩阵的高阶分量,从而显著提高LLM的性能。这种操作可以在模型训练完成后进行,无需额外的参数或数据
在操作过程中,权重的减少是在模型特定的权重矩阵和层中进行的。这项研究还发现,许多类似的矩阵都可以显著减少权重,并且通常在删除超过90%的组件之前不会观察到性能下降
该研究还发现这些减少可以显著提高准确率,这一发现似乎不仅限于自然语言,在强化学习中也发现了性能提升。
此外,该研究尝试推断出高阶组件中存储的内容是什么,以便进行删除从而提高性能。该研究发现经过 LASER 回答正确的问题,但在干预之前,原始模型主要用高频词 (如 “the”、“of” 等) 来回应,这些词甚至与正确答案的语义类型都不相同,也就是说这些成分在未经干预的情况下会导致模型生成一些不相干的高频词汇。
然而,通过进行一定程度的降秩后,模型的回答可以转变为正确的。
为了理解这一点,该研究还探索了其余组件各自编码的内容,他们仅使用其高阶奇异向量来近似权重矩阵。结果发现这些组件描述了与正确答案相同语义类别的不同响应或通用高频词。
这些结果表明,当嘈杂的高阶分量与低阶分量组合时,它们相互冲突的响应会产生一种平均答案,这可能是不正确的。图 1 直观地展示了 Transformer 架构和 LASER 遵循的程序。在这里,特定层的多层感知器(MLP)的权重矩阵被替换为其低秩近似。
激光概览
对LASER干预进行了详细介绍。单步LASER干预通过三元组(τ, ℓ, ρ)来定义,其中包含参数τ、层数ℓ和降秩ρ。这些值共同描述了要被它们的低秩近似所替代的矩阵,以及近似的程度。研究者根据参数类型对他们将要干预的矩阵类型进行分类
研究者重点关注 W = {W_q, W_k, W_v, W_o, U_in, U_out} 中的矩阵,它由 MLP 和注意力层中的矩阵组成。层数表示了研究者干预的层(第一层从 0 开始索引)。例如 Llama-2 有 32 层,因此 ℓ ∈ {0, 1, 2,・・・31}。
最终,ρ ∈ [0, 1) 描述了在做低秩近似时应该保留最大秩的哪一部分。例如设,则该矩阵的最大秩为 d。研究者将它替换为⌊ρ・d⌋- 近似。
下图 1 为 LASER 示例,该图中,τ = U_in 和ℓ = L 表示在 L^th 层的 Transformer 块中来更新 MLP 第一层的权重矩阵。另一个参数控制 rank-k 近似中的 k。
LASER 可以限制网络中某些信息的流动,并出乎意料地产生显着的性能优势。这些干预也可以很容易组合起来,比如以任何顺序来应用一组干预。
LASER 方法只是对这类干预进行简单的搜索,并修改以带来最大收益。不过,还有很多其他方法可以将这些干预组合起来,这是研究者未来工作的方向。
为了保持原意不变,需要将内容重新写成中文。而不需要出现原句
在实验部分,研究者使用了在 PILE 数据集上预训练的 GPT-J 模型,该模型的层数为 27,参数为 60 亿。然后在 CounterFact 数据集上评估模型的行为,该数据集包含(主题、关系和答案)三元组的样本,每个问题提供了三个释义 prompt。
首先是 CounterFact 数据集上对 GPT-J 模型的分析。下图 2 展示了在 Transformer 架构中为每个矩阵应用不同数量降秩的结果对数据集分类损失的影响。其中每个 Transformer 层都由一个两层的小型 MLP 组成,输入和输出矩阵分别显示。不同的颜色表示移除组件的不同百分比。
关于提升释义的准确度和稳健性,如上图2 和下表1 所示,研究者发现,当在单层上进行降秩时,GPT-J 模型在CounterFact 数据集上的事实准确度从13.1% 增加到了24.0%。需要注意一点,这些改进只是降秩的结果,并不涉及对模型的任何进一步训练或微调。
哪些事实会通过降秩恢复在数据集中成为研究者关注的问题。研究者发现,通过降秩恢复的事实在数据中很少出现,如图 3 所示
高阶组件存储了什么?研究者使用高阶组件来近似最终的权重矩阵,与LASER不同,它们不使用低阶组件来进行近似,如图5(a)所示。在使用不同数量的高阶组件来近似矩阵时,他们测量了真实答案与预测答案之间的平均余弦相似度,如图5(b)所示
最后,研究者评估了自身发现对3 种不同的LLM 在多项语言理解任务上的普遍性。对于每项任务,他们通过生成准确度、分类准确度和损失三种指标来评估模型的性能。如上表 1 所示,即使降秩很大也不会导致模型准确度下降,却可以提升模型性能。
以上是减少Transformer秩数以提高性能,同时保持移除特定层90%以上组件LLM不减少的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RL

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

把因果链展示给LLM,它就能学会公理。AI已经在帮助数学家和科学家做研究了,比如著名数学家陶哲轩就曾多次分享自己借助GPT等AI工具研究探索的经历。AI要在这些领域大战拳脚,强大可靠的因果推理能力是必不可少的。本文要介绍的这项研究发现:在小图谱的因果传递性公理演示上训练的Transformer模型可以泛化用于大图谱的传递性公理。也就是说,如果让Transformer学会执行简单的因果推理,就可能将其用于更为复杂的因果推理。该团队提出的公理训练框架是一种基于被动数据来学习因果推理的新范式,只有演示

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。引言近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显着的成功。然而,作为许多下游任务的基础模型,当前的MLLM由众所周知的Transformer网络构成,这种网
