交互方式的定义:模型量化与边缘人工智能的交互
人工智能与边缘计算的融合为许多行业带来了革命性的变化。其中,模型量化的快速创新起到了关键作用。模型量化是一种通过提高可移植性和减小模型大小来加快计算速度的技术
重写后的内容是: 边缘设备的计算能力有限,无法满足部署高精度模型的需求,因此模型量化技术被引入来弥补这一差距,以实现更快、更高效、更具成本效益的边缘人工智能解决方案。广义训练后量化(GPTQ)、低秩适应(LoRA)和量化低秩适应(QLoRA)等突破技术有望在实时数据生成时促进分析和决策的进行
通过将边缘人工智能与适当的工具和技术结合起来,我们可以重新定义与数据和数据驱动应用的交互方式
为什么选择边缘人工智能?
边缘人工智能的目标是将数据处理和模型推近数据生成的地方,如远程服务器、平板电脑、物联网设备或智能手机。这样可以实现低延迟、实时的人工智能。预计到2025年,超过一半的深度神经网络数据分析将在边缘进行。这种转变模式将带来多重优势:
- 减少延迟:通过直接在设备上处理数据,边缘人工智能减少了与云来回传输数据的需要。这对于依赖实时数据并需要快速响应的应用至关重要。
- 降低成本和复杂性:在边缘本地处理数据消除了来回发送信息的昂贵的数据传输成本。
- 隐私保护:数据保留在设备上,减少数据传输和数据泄露的安全风险。
- 更好的可扩展性:采用边缘人工智能的去中心化方法可以更轻松地扩展应用,而无需依赖中央服务器的处理能力。
例如,制造商可以在其流程中应用边缘人工智能技术,用于预测性维护、质量控制和缺陷检测。通过在智能机器和传感器上运行人工智能,并在本地分析数据,制造商可以更好地利用实时数据,减少停机时间,并改进生产流程和效率
模型量化的作用
为了使边缘人工智能发挥作用,人工智能模型需要在不影响准确性的情况下优化性能。随着人工智能模型变得越来越复杂、越来越庞大,它们在处理过程中变得更加困难。这给边缘部署人工智能模型带来了挑战,因为边缘设备通常资源有限,对于支持这类模型的能力也存在限制
通过模型量化可以降低模型参数的数值精度,例如从32位浮点数减少到8位整数,从而使模型变得更加轻量化,适用于手机、边缘设备和嵌入式系统等资源受限的设备上进行部署
GPTQ、LoRA和QLoRA这三种技术已经成为模型量化领域潜在的游戏规则改变者。 GPTQ、LoRA和QLoRA这三种技术已经成为模型量化领域的潜在游戏规则改变者
- GPTQ涉及在训练后压缩模型。它非常适合在内存有限的环境中部署模型。
- LoRA涉及微调大型预训练模型以进行推理。具体来说,它对构成预训练模型大矩阵的较小矩阵(称为LoRA适配器)进行微调。
- QLoRA是一种内存效率更高的选项,它利用GPU内存来进行预训练模型。当使模型适应新任务或计算资源有限的数据集时,LoRA和QLoRA特别有用。
从这些方法中进行选择在很大程度上取决于项目的独特需求、项目是否处于微调阶段或部署阶段,以及是否拥有可供使用的计算资源。通过使用这些量化技术,开发人员可以有效地将人工智能带到边缘,在性能和效率之间取得平衡,这对于广泛的应用至关重要
边缘人工智能用例和数据平台
边缘人工智能的应用非常广泛。从处理火车站有轨车检查图像的智能相机,到检测佩戴者生命体征异常的可穿戴健康设备,再到监控零售商货架上库存的智能传感器,可能性是无限的。因此,IDC预测2028年边缘计算支出将达到3170亿美元,边缘正在重新定义组织处理数据的方式
随着组织意识到边缘人工智能推理的好处,对强大的边缘推理堆栈和数据库的需求将会迅速增长。这样的平台可以促进本地数据处理,并同时提供边缘人工智能的所有优势,包括减少延迟和增强数据隐私
为了促进边缘人工智能的快速发展,持久的数据层在本地和基于云的数据管理、分发和处理方面至关重要。随着多模态人工智能模型的出现,能够处理不同类型数据的统一平台对于满足边缘计算的运营需求变得至关重要。拥有统一的数据平台可以使人工智能模型在在线和离线环境中无缝访问本地数据存储并进行互动。此外,分布式推理也有望解决当前的数据隐私和合规性问题
随着我们向智能边缘设备迈进,人工智能、边缘计算和边缘数据库管理的融合将成为预示快速、实时和安全解决方案时代的核心。展望未来,组织可以专注于实施复杂的边缘策略,以高效、安全地管理人工智能工作负载并简化业务中数据的使用
以上是交互方式的定义:模型量化与边缘人工智能的交互的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
