首页 科技周边 人工智能 谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

Jan 16, 2024 am 11:24 AM
四足机器人 理论 交互式系统

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。

近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对 LLM 来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为 LLM 提供了决定机器人行为的高层 API,而这就从根本上限制了系统的表现能力。

在 CoRL 2023 论文《SayTap: Language to Quadrupedal Locomotion》中,谷歌 DeepMind 与东京大学提出了一种新方法,该方法使用足部接触模式作为连接人类的自然语言指令与输出低层命令的运动控制器的桥梁。

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

  • 论文地址:https://arxiv.org/abs/2306.07580
  • 项目网站:https://saytap.github.io/

足部接触模式(foot contact pattern)是指四足智能体在移动时足放在地上的顺序和方式。他们基于此开发出了一种交互式四足机器人系统,让用户可以灵活地制定不同的运动行为,比如用户可以使用简单的语言命令机器人走、跑、跳或执行其它动作。

他们的贡献包括一种 LLM prompt 设计、一个奖励函数和一种能让 SayTap 控制器使用可行的接触模式分布的方法。

研究表明 SayTap 控制器能够实现多种运动模式,并且这些能力还能迁移用于真实机器人硬件。

SayTap 方法

SayTap 方法使用了一种接触模式模板,该模板是一个由 0 和 1 构成的 4 X T 矩阵,其中 0 表示智能体的脚在空中,1 表示脚落在地面。从上至下,该矩阵的每一行分别给出了左前足(FL)、右前足(FR)、左后足(RL)、右后足(RR)的足部接触模式。SayTap 的控制频率为 50 Hz,即每个 0 或 1 持续 0.02 秒。这项研究将所需足部接触模式定义为一个大小为 L_w、形状为 4 X L_w 的循环滑动窗口。该滑动窗口会从接触模式模板提取四足的接地标志,其指示了在时间 t + 1 和 t + L_w 之间机器人足是在地面还是在空中。下图给出了 SayTap 方法的概况。

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

SayTap 方法概述

SayTap 引入的所需足部接触模式可作为自然语言用户命令与运动控制器之间的新接口。运动控制器是用于完成主要任务的(比如遵循指定的速度)以及用于在特定时间将机器人足放在地上,以使实现的足部接触模式尽可能接近所需的接触模式。

为了做到这一点,在每个时间步骤,运动控制器以所需的足部接触模式为输入,再加上本体感官数据(如关节位置和速度)及任务相关输入(如特定于用户的速度命令)。DeepMind 使用了强化学习来训练该运动控制器,并将其表征成一个深度神经网络。在控制器的训练期间,研究者使用了一个随机生成器来采样所需的足部接触模式,然后优化策略以输出能实现所需足部接触模式的低层机器人动作。而在测试时间,则是使用 LLM 将用户指令转译成足部接触模式。

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

SayTap 使用足部接触模式作为连接自然语言用户指令和低层控制命令的桥梁。SayTap 既支持简单直接的指令(比如「向前慢速小跑」),也支持模糊的用户命令(比如「好消息,我们这个周末去野餐!)。通过基于强化学习的运动控制器,能让四足机器人根据命令做出反应。

研究表明:使用适当设计的 prompt,LLM 有能力准确地将用户命令映射到特定格式的足部接触模式模板中,即便用户命令是非结构化的或模糊的。在训练中,研究者使用随机模式生成器生成了多种接触模式模板,它们有不同的模式长度 T、基于给定步态类型 G 在一个周期内的足地接触比,使得运动控制器能够在广泛的运动模式分布上学习,获得更好的泛化能力。更多详情请参阅论文。

实验结果

使用一个仅包含三种常见足部接触模式上下文样本的简单 prompt,LLM 可将各种人类命令准确地转译成接触模式,甚至泛化用于那些没有明确指定机器人应当如何行为的情况。

SayTap prompt 简洁紧凑,包含四个组分:

(1) 用于描述 LLM 应完成的任务的一般性说明;
(2) 步态定义,用于提醒 LLM 关注有关四足步态的基本知识以及它们与情绪的关联;
(3) 输出格式定义;
(4) 演示示例,让 LLM 学习在上下文中的情况。

研究者还设定了五种速度,让机器人可以前进或后退、快速或慢速、或保持不动。

遵循简单和直接的命令

下面的动图展示了 SayTap 成功执行直接清晰命令的示例。尽管某些命令并不包含在三个上下文示例之中,但依然可以引导 LLM 表达出其在预训练阶段学习到的内部知识,这会用到 prompt 中的「步态定义模块」,即上面 prompt 中第二个模块。

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

遵循非结构化或模糊的命令

但更有趣的是 SayTap 处理非结构化和模糊指令的能力。只需一点提示即可将某些步态与一般情绪印象联系起来,比如机器人在听到让其兴奋的消息(如「我们去野餐吧!」)后会上下跳跃。此外,它还能准确地呈现出场景,比如当被告知地面非常热时,机器人会快速移动,让脚尽量少接触地面。

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐


总结和未来工作

SayTap 是一个用于四足机器人的交互式系统,其允许用户灵活地制定不同的运动行为。SayTap 引入了所需足部接触模式作为自然语言与低层控制器之间的接口。这种新接口简单直接又很灵活,此外,它既支持机器人遵循直接指令,也支持机器人遵从没有明确说明机器人行为方式的命令。

DeepMind 的研究者表示,未来一大研究方向是测试暗含特定感受的命令是否能让 LLM 输出所需步态。在上面结果的步态定义模块中,研究者提供了一个将开心情绪与跳动步态联系起来的句子。如果能提供更多信息,也许能增强 LLM 解释命令的能力,比如解读隐含的感受。在实验评估中,开心情绪与跳动步态的联系能让机器人在遵从模糊的人类指令行动时表现得充满活力。另一个有趣的未来研究方向是引入多模态输入,比如视频和音频。理论上讲,从这些信号转译而来的足部接触模式也适用于这里新提出的工作流程,并有望开创更多有趣的用例。

原文链接:https://blog.research.google/2023/08/saytap-language-to-quadrupedal.html

以上是谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1659
14
CakePHP 教程
1416
52
Laravel 教程
1310
25
PHP教程
1259
29
C# 教程
1233
24
突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

PRO | 为什么基于 MoE 的大模型更值得关注? PRO | 为什么基于 MoE 的大模型更值得关注? Aug 07, 2024 pm 07:08 PM

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊 准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊 Aug 06, 2024 pm 07:34 PM

编辑|KX逆合成是药物发现和有机合成中的一项关键任务,AI越来越多地用于加快这一过程。现有AI方法性能不尽人意,多样性有限。在实践中,化学反应通常会引起局部分子变化,反应物和产物之间存在很大重叠。受此启发,浙江大学侯廷军团队提出将单步逆合成预测重新定义为分子串编辑任务,迭代细化目标分子串以生成前体化合物。并提出了基于编辑的逆合成模型EditRetro,该模型可以实现高质量和多样化的预测。大量实验表明,模型在标准基准数据集USPTO-50 K上取得了出色的性能,top-1准确率达到60.8%。

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

See all articles