首页 科技周边 人工智能 LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

Jan 18, 2024 pm 02:15 PM
ai 数据

如何根据特定需求选择视觉模型?

ConvNet/ViT、supervised/CLIP模型,在ImageNet之外的指标上如何相互比较?

来自MABZUAI和Meta的研究人员发表的最新研究,在「非标准」指标上全面比较了常见的视觉模型。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

论文地址:https://arxiv.org/pdf/2311.09215.pdf

LeCun对这项研究给予高度赞扬,称其为非常出色的研究。研究比较了相似大小的ConvNext和VIT架构,在监督模式和使用CLIP方法进行训练时,对各种属性进行了全面比较。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

超越ImageNet准确性

计算机视觉模型格局,变得越来越多样复杂。

从早期的ConvNets到Vision Transformers的演进,可用模型的种类在不断扩展。

类似地,训练范式已经从ImageNet上的监督训练,发展到自监督学习、像CLIP这样的图像文本对训练。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

在标志着进步的同时,这种选择的爆炸式增长给从业者带来了重大挑战:如何选择适合自己的目标模型?

一直以来,ImageNet准确率一直是评估模型性能的主要指标。自从引发深度学习革命以来,它已经推动了人工智能领域显著的进步。

不过,它却无法衡量因不同架构、训练范式和数据而产生的细微差别的模型。

如果仅根据ImageNet的准确度来判断,具有不同属性的模型可能看起来很相似(图 1)。随着模型开始过度拟合ImageNet的特性,精度达到饱和,这种局限性就会变得更加明显。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

为了弥补差距,研究人员对ImageNet准确性之外的模型行为进行了深入探索。

为了研究架构和训练目标对模型性能的影响,具体比较了Vision Transformer (ViT)和ConvNeXt。这两种现代架构的ImageNet-1K验证精度和计算要求相当。

此外,研究对比了以DeiT3-Base/16和ConvNeXt-Base为代表的监督模型,以及OpenCLIP基于CLIP模型的视觉编码器。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

结果分析

研究人员的分析旨在,研究无需进一步训练或微调即可评估的模型行为。

这种方法对于计算资源有限的从业人员尤为重要,因为他们通常依赖于预训练模型。

具体分析中,虽然作者认识到对象检测等下游任务的价值,但重点是那些能以最小的计算需求提供洞察力的特性,以及反映对真实世界应用非常重要的行为的特性。

模型错误

ImageNet-X是一个对ImageNet-1K进行了扩展的数据集,其中包含16个变化因素的详细人工标注,从而能够深入分析图像分类中的模型错误。

它采用错误率(越低越好)来量化模型在特定因素上,相对于整体准确性的表现,从而对模型错误进行细致入微的分析。ImageNet-X 的结果表明:

1. 相对于其ImageNet准确性,CLIP模型比受监督的模型犯的错误更少。

2. 所有模型都主要受到遮挡等复杂因素的影响。

3. 纹理是所有模型中最具挑战性的因素。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

形状/纹理偏差

形状/纹理偏差会检验模型,是否依赖于纹理快捷方式,而不是高级形状提示。

这种偏向可以通过结合不同类别的形状和纹理的提示冲突图像来研究。

这种方法有助于了解与纹理相比,模型的决策在多大程度上是基于形状的。

研究人员对提示冲突数据集上的形状-纹理偏差进行了评估,发现CLIP模型的纹理偏差小于监督模型,而ViT模型的形状偏差高于ConvNets。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

模型校准

校准可量化模型的预测置信度与其实际准确度是否一致。

这可以通过预期校准误差 (ECE) 等指标,以及可靠性图和置信度直方图等可视化工具进行评估。

研究人员在ImageNet-1K和ImageNet-R上对校准进行了评估,将预测分为15个等级。在实验中,观察到以下几点:

- CLIP模型置信度高,而监督模型则略显不足。

- 有监督的ConvNeXt比有监督的ViT校准得更好。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

健壮性和可移植性

模型的健壮性和可移植性,是适应数据分布变化和新任务的关键。

研究人员使用不同的ImageNet变体评估了稳健性,发现虽然ViT和ConvNeXt模型具有类似的平均性能,但除了ImageNet-R和ImageNet-Sketch之外,监督模型在稳健性方面通常优于CLIP。

在可移植性方面,使用VTAB基准测试对19个数据集进行评估,监督ConvNeXt优于ViT,几乎与CLIP模型的性能相当。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

合成数据

像PUG-ImageNet这样的合成数据集,可以精确控制相机角度和纹理等因素,成为一种很有前途的研究途径,因此研究人员根据合成数据分析模型的性能。

PUG-ImageNet包含逼真的ImageNet图像,这些图像具有照明等因素的系统变化,性能以绝对最高准确率来衡量。

研究人员提供了PUG-ImageNet中不同因素的结果,发现ConvNeXt在几乎所有因素上都优于ViT。

这表明ConvNeXt在合成数据上优于ViT,而CLIP模型的差距较小,因为CLIP模型的准确率低于监督模型,这可能与原始ImageNet的准确率较低有关。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

特征不变性

特征不变性是指模型能够产生一致的表征,不受输入转换的影响,从而保留语义,如缩放或移动。

这一特性使模型能够在不同但语义相似的输入中很好地泛化。

研究人员的方法包括,调整图像大小以实现比例不变性,移动裁剪以实现位置不变性,以及使用内插位置嵌入调整ViT模型的分辨率。

在有监督的训练中,ConvNeXt的表现优于ViT。

总体而言,模型对尺度/分辨率变换的鲁棒性高于对移动的鲁棒性。对于需要对缩放、位移和分辨率具有较高鲁棒性的应用,研究结果表明有监督的ConvNeXt可能是最佳选择。

LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?

研究人员发现,每种模型都有自己独特的优势。

这表明模型的选择应该取决于目标用例,因为标准的性能指标可能会忽略关键任务特定的细微差别。

此外,许多现有的基准是从ImageNet派生出来的,这对评估有偏见。开发具有不同数据分布的新基准,对于在更具现实代表性的背景下评估模型至关重要。

ConvNet vs Transformer

- 在许多基准测试中,有监督的ConvNeXt比有监督的VIT具有更好的性能:它更好地校准,对数据转换不变,表现出更好的可转移性和健壮性。

- 在合成数据上,ConvNeXt的表现优于ViT。

- ViT有较高的形状偏向。

Supervised vs CLIP

- 尽管CLIP模型在可转移性方面更好,但监督的ConvNeXt在这项任务上表现出了竞争力。这展示了有监督的模型的潜力。

- 监督模型更擅长稳健性基准,这可能是因为这些模型是ImageNet的变体。

- CLIP模型具有较高的形状偏差,与其ImageNet精度相比,分类错误较少。

以上是LeCun的评价:对ConvNet和Transformer进行Meta评测,哪一个更强?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Vue.js 中字符串转对象用什么方法? Vue.js 中字符串转对象用什么方法? Apr 07, 2025 pm 09:39 PM

Vue.js 中字符串转对象时,首选 JSON.parse() 适用于标准 JSON 字符串。对于非标准 JSON 字符串,可根据格式采用正则表达式和 reduce 方法或解码 URL 编码字符串后再处理。根据字符串格式选择合适的方法,并注意安全性与编码问题,以避免 bug。

mysql安装后怎么使用 mysql安装后怎么使用 Apr 08, 2025 am 11:48 AM

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

如何设置Vue Axios的超时时间 如何设置Vue Axios的超时时间 Apr 07, 2025 pm 10:03 PM

为了设置 Vue Axios 的超时时间,我们可以创建 Axios 实例并指定超时选项:在全局设置中:Vue.prototype.$axios = axios.create({ timeout: 5000 });在单个请求中:this.$axios.get('/api/users', { timeout: 10000 })。

Vue.js 如何将字符串类型的数组转换为对象数组? Vue.js 如何将字符串类型的数组转换为对象数组? Apr 07, 2025 pm 09:36 PM

总结:将 Vue.js 字符串数组转换为对象数组有以下方法:基本方法:使用 map 函数,适合格式规整的数据。高级玩法:使用正则表达式,可处理复杂格式,但需谨慎编写,考虑性能。性能优化:考虑大数据量,可使用异步操作或高效数据处理库。最佳实践:清晰的代码风格,使用有意义的变量名、注释,保持代码简洁。

Laravel的地理空间:互动图和大量数据的优化 Laravel的地理空间:互动图和大量数据的优化 Apr 08, 2025 pm 12:24 PM

利用地理空间技术高效处理700万条记录并创建交互式地图本文探讨如何使用Laravel和MySQL高效处理超过700万条记录,并将其转换为可交互的地图可视化。初始挑战项目需求:利用MySQL数据库中700万条记录,提取有价值的见解。许多人首先考虑编程语言,却忽略了数据库本身:它能否满足需求?是否需要数据迁移或结构调整?MySQL能否承受如此大的数据负载?初步分析:需要确定关键过滤器和属性。经过分析,发现仅少数属性与解决方案相关。我们验证了过滤器的可行性,并设置了一些限制来优化搜索。地图搜索基于城

mysql 无法启动怎么解决 mysql 无法启动怎么解决 Apr 08, 2025 pm 02:21 PM

MySQL启动失败的原因有多种,可以通过检查错误日志进行诊断。常见原因包括端口冲突(检查端口占用情况并修改配置)、权限问题(检查服务运行用户权限)、配置文件错误(检查参数设置)、数据目录损坏(恢复数据或重建表空间)、InnoDB表空间问题(检查ibdata1文件)、插件加载失败(检查错误日志)。解决问题时应根据错误日志进行分析,找到问题的根源,并养成定期备份数据的习惯,以预防和解决问题。

mysql安装后怎么优化数据库性能 mysql安装后怎么优化数据库性能 Apr 08, 2025 am 11:36 AM

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。

偏远的高级后端工程师(平台)需要圈子 偏远的高级后端工程师(平台)需要圈子 Apr 08, 2025 pm 12:27 PM

远程高级后端工程师职位空缺公司:Circle地点:远程办公职位类型:全职薪资:$130,000-$140,000美元职位描述参与Circle移动应用和公共API相关功能的研究和开发,涵盖整个软件开发生命周期。主要职责独立完成基于RubyonRails的开发工作,并与React/Redux/Relay前端团队协作。为Web应用构建核心功能和改进,并在整个功能设计过程中与设计师和领导层紧密合作。推动积极的开发流程,并确定迭代速度的优先级。要求6年以上复杂Web应用后端

See all articles