目录
训练集、验证集和测试集
如何拆分数据集
数据拆分的技术
数据拆分中的常见陷阱
首页 科技周边 人工智能 数据拆分的技术和陷阱——训练集、验证集与测试集的使用方式

数据拆分的技术和陷阱——训练集、验证集与测试集的使用方式

Jan 22, 2024 pm 02:45 PM
机器学习

数据拆分的技术和陷阱——训练集、验证集与测试集的使用方式

为了构建可靠的机器学习模型,数据集的拆分是必不可少的。拆分过程包括将数据集分为训练集、验证集和测试集。本文旨在详细介绍这三个集合的概念、数据拆分的技术以及容易出现的陷阱。

训练集、验证集和测试集

训练集

训练集是用于训练和使模型学习数据中隐藏的特征/模式的数据集。

在每个epoch中,相同的训练数据被重复输入神经网络架构,模型继续学习数据的特征。

训练集应该具有多样化的输入集,以便模型在所有场景下都得到训练,并且可以预测未来可能出现的数据样本。

验证集

验证集是一组数据,与训练集分开,用于在训练期间验证模型性能。

此验证过程提供的信息可帮助调整模型的超参数和配置。该模型在训练集上进行训练,同时,在每个epoch之后对验证集进行模型评估。

将数据集拆分为验证集的主要目的是防止模型过度拟合,即该模型非常擅长对训练集中的样本进行分类,但不能对没有见过的数据进行泛化和准确分类。

测试集

测试集是一组单独的数据,用于在完成训练后测试模型。它在准确度、精确度等方面提供了一个无偏的最终模型性能指标。简单来说,测试集可反映出模型的性能。

如何拆分数据集

在数据集中创建不同的样本和拆分有助于判断真实模型的性能。数据集拆分率取决于数据集中存在的样本数量和模型。

数据集拆分常见推论

如果有多个超参数需要调整,机器学习模型需要更大的验证集来优化模型性能。同样,如果模型的超参数较少或没有超参数,则可以很容易地使用一小组数据来验证模型。

如果模型用例导致错误预测会严重影响模型性能,则最好在每个时期后验证模型以使模型学习不同的场景。

随着数据维度/特征的增加,神经网络函数的超参数也随之增加,使得模型更加复杂。在这些情况下,应将大量数据与验证集一起保存在训练集中。

数据拆分的技术

1.随机抽样

随机抽样是最古老和最流行的划分数据集的方法。顾名思义,数据集被打乱,样本被随机挑选并根据用户给出的百分比放入训练、验证或测试集中。

然而,这种方法有一个明显的缺点。随机抽样在类平衡数据集上效果最佳,即每个数据集类别中样本数量大致相同的数据集。在类不平衡数据集的情况下,这种数据拆分方法可能会产生偏差。

2.分层抽样

分层抽样缓解具有不平衡类分布的数据集中的随机抽样问题。可以保留每个训练集、验证集和测试集中的类分布。分层抽样是一种更公平的数据拆分方式。

3.交叉验证

交叉验证或K-Fold交叉验证是一种更强大的数据拆分技术,其中对不同样本训练和评估模型“K”次。

使用K-Fold交叉验证将机器学习模型暴露给不同的数据分布。一定程度上减轻了在训练和验证集中选择数据时可能出现的偏差。在使用K-Fold交叉验证方案时,通常会报告平均值和标准偏差值。

因此K-Fold交叉验证也存在与随机抽样相同的问题,数据分布可能会出现偏差。可以使用分层,在生成数据的“K”个子集或部分时,保持数据的类比。

数据拆分中的常见陷阱

1.使用低质量的训练数据

由于机器学习算法对训练数据很敏感,即使训练集中的微小变化/错误也会导致模型性能出现重大错误。因此训练数据的质量对于提高模型性能至关重要。

2.过拟合

当机器学习模型无法对未知的数据进行分类时,就会发生过度拟合。训练数据中的噪声或波动被视为特征并由模型学习。这导致模型在训练集中表现出色,但在验证和测试集中表现不佳。

3.过分强调验证和测试集指标

验证集度量是决定模型训练路径的度量。在每个时期之后,机器学习模型都会在验证集上进行评估。根据验证集指标,计算相应的损失项,修改超参数。应选择指标,以便它们对模型性能的整体轨迹产生积极影响。

以上是数据拆分的技术和陷阱——训练集、验证集与测试集的使用方式的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

15个值得推荐的开源免费图像标注工具 15个值得推荐的开源免费图像标注工具 Mar 28, 2024 pm 01:21 PM

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通透!机器学习各大模型原理的深度剖析! 通透!机器学习各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

Golang技术在机器学习中未来趋势展望 Golang技术在机器学习中未来趋势展望 May 08, 2024 am 10:15 AM

Go语言在机器学习领域的应用潜力巨大,其优势在于:并发性:支持并行编程,适合机器学习任务中的计算密集型操作。高效性:垃圾收集器和语言特性确保代码高效,即使处理大型数据集。易用性:语法简洁,学习和编写机器学习应用程序容易。

See all articles