自我奖励下的大型模型:Llama2通过Meta学习自行优化,超越GPT-4的性能
人工智能的反馈(AIF)要代替 RLHF 了?

论文标题:Self-Rewarding Language Models
论文链接:https://arxiv.org/abs/2401.10020
研究者在 AlpacaEval 2 排行榜上评估了自奖励模型,结果如表 1 所示。他们观察到了与 head-to-head 评估相同的结论,即训练迭代的胜率比 GPT4-Turbo 高,从迭代 1 的 9.94%,到迭代 2 的 15.38%,再到迭代 3 的 20.44%。同时,迭代 3 模型优于许多现有模型,包括 Claude 2、Gemini Pro 和 GPT4 0613。
EFT在SFT基线上有所改进,使用IFT+EFT与单独使用IFT相比,五个测量指标都有所提高。例如,与人类的成对准确率一致性从65.1%上升到78.7%。
通过自我训练提高奖励建模能力。进行一轮自我奖励训练后,模型为下一次迭代提供自我奖励的能力得到了提高,此外它的指令跟随能力也得到了提高。
LLMas-a-Judge 提示的重要性。研究者使用了各种提示格式发现,LLMas-a-Judge 提示在使用 SFT 基线时成对准确率更高。
以上是自我奖励下的大型模型:Llama2通过Meta学习自行优化,超越GPT-4的性能的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

快准备好你的GPU!Llama3.1终于现身了,不过出处却不是Meta官方。今日,Reddit上新版Llama大模型泄露的消息遭到了疯传,除了基础模型,还包括8B、70B和最大参数的405B的基准测试结果。下图为Llama3.1各版本与OpenAIGPT-4o、Llama38B/70B的比较结果。可以看到,即使是70B的版本,也在多项基准上超过了GPT-4o。图源:https://x.com/mattshumer_/status/1815444612414087294显然,3.1版本的8B和70

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

刚刚,大家期待已久的Llama3.1官方正式发布了!Meta官方发出了「开源引领新时代」的声音。在官方博客中,Meta表示:「直到今天,开源大语言模型在功能和性能方面大多落后于封闭模型。现在,我们正在迎来一个开源引领的新时代。我们公开发布MetaLlama3.1405B,我们认为这是世界上最大、功能最强大的开源基础模型。迄今为止,所有Llama版本的总下载量已超过3亿次,我们才刚刚开始。」Meta创始人、CEO扎克伯格也亲自写了篇长文《OpenSourceAIIsthePathForward》,

语言模型真的能用于时序预测吗?根据贝特里奇头条定律(任何以问号结尾的新闻标题,都能够用「不」来回答),答案应该是否定的。事实似乎也果然如此:强大如斯的LLM并不能很好地处理时序数据。时序,即时间序列,顾名思义,是指一组按照时间发生先后顺序进行排列的数据点序列。在很多领域,时序分析都很关键,包括疾病传播预测、零售分析、医疗和金融。在时序分析领域,近期不少研究者都在研究如何使用大型语言模型(LLM)来分类、预测和检测时间序列中的异常。这些论文假设擅长处理文本中顺序依赖关系的语言模型也能泛化用于时间序
