首页 后端开发 Python教程 简单介绍SORT跟踪算法及其Python实现示例

简单介绍SORT跟踪算法及其Python实现示例

Jan 23, 2024 pm 11:18 PM
机器学习 算法的概念

简单介绍SORT跟踪算法及其Python实现示例

SORT(Simple Online and Realtime Tracking)是一种基于卡尔曼滤波的目标跟踪算法,它可以在实时场景中对移动目标进行鲁棒跟踪。SORT算法最初是由Alex Bewley等人在2016年提出的,它已被广泛应用于计算机视觉领域的各种应用中,例如视频监控、自动驾驶、机器人导航等。

SORT算法主要基于两个核心思想:卡尔曼滤波和匈牙利算法。卡尔曼滤波是一种用于估计系统状态的算法,它可以利用系统的动态模型和传感器测量值,对系统状态进行预测和更新,从而提高状态估计的准确性。匈牙利算法是一种用于解决二分图最大权匹配问题的算法,它可以在给定一个二分图的情况下,找到最大权匹配。

SORT算法的主要步骤如下:

目标检测:使用目标检测算法(如YOLO、SSD等)提取当前帧中的目标信息。

状态预测:对于每个已经跟踪的目标,利用卡尔曼滤波对其状态进行预测。

数据关联:根据预测状态和当前帧中的目标信息,使用匈牙利算法进行数据关联,找到每个已经跟踪的目标在当前帧中对应的目标。

状态更新:对于每个已经跟踪的目标,利用卡尔曼滤波对其状态进行更新。

目标输出:输出每个已经跟踪的目标的状态信息和跟踪结果。

在计算机视觉中,SORT算法可以应用于各种目标跟踪场景。例如,在视频监控中,SORT算法可以对移动目标进行实时跟踪,从而实现对场景中的异常行为进行检测和预警。在自动驾驶领域,SORT算法可以对其他车辆、行人等交通参与者进行跟踪,从而实现车辆的自主导航和避障。在机器人导航中,SORT算法可以对移动目标进行跟踪,从而实现机器人的自主导航和避障。

以下是一个使用Python实现的简单示例代码:

#python
import numpy as np
from filterpy.kalman import KalmanFilter
from scipy.optimize import linear_sum_assignment

class Track:

def init(self,prediction,track_id,track_lifetime):
    self.prediction=np.atleast_2d(prediction)
    self.track_id=track_id
    self.track_lifetime=track_lifetime
    self.age=0
    self.total_visible_count=1
    self.consecutive_invisible_count=0

def predict(self, kf):
    self.prediction = kf.predict()
    self.age += 1

def update(self, detection, kf):
    self.prediction = kf.update(detection)
    self.total_visible_count += 1
    self.consecutive_invisible_count = 0

def mark_missed(self):
    self.consecutive_invisible_count += 1

def is_dead(self):
    return self.consecutive_invisible_count >= self.track_lifetime

class Tracker:

def init(self,track_lifetime,detection_variance,process_variance):
    self.next_track_id=0
    self.tracks=[]
    self.track_lifetime=track_lifetime
    self.detection_variance=detection_variance
    self.process_variance=process_variance
    self.kf=KalmanFilter(dim_x=4,dim_z=2)
    self.kf.F=np.array([[1,0,1,0],
                    [0,1,0,1],
                    [0,0,1,0],
                    [0,0,0,1]])
    self.kf.H=np.array([[1,0,0,0],
                    [0,1,0,0]])
    self.kf.R=np.array([[self.detection_variance,0],
                    [0,self.detection_variance]])
    self.kf.Q=np.array([[self.process_variance,0,0,0],
                    [0,self.process_variance,0,0],
                    [0,0,self.process_variance,0],
                    [0,0,0,self.process_variance]])

def update(self, detections):
    # predict track positions using Kalman filter
    for track in self.tracks:
        track.predict(self.kf)

    # associate detections with tracks using Hungarian algorithm
    if len(detections) > 0:
        num_tracks = len(self.tracks)
        num_detections = len(detections)
        cost_matrix = np.zeros((num_tracks, num_detections))
        for i, track in enumerate(self.tracks):
            for j, detection in enumerate(detections):
                diff = track.prediction - detection
                distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2)
                cost_matrix[i,j] = distance
        row_indices, col_indices = linear_sum_assignment(cost_matrix)
        unassigned_tracks = set(range(num_tracks)) - set(row_indices)
        unassigned_detections = set(range(num_detections)) - set(col_indices)
        for i, j in zip(row_indices, col_indices):
            self.tracks[i].update(detections[j], self.kf)
        for i in unassigned_tracks:
            self.tracks[i].mark_missed()
        for j in unassigned_detections:
            new_track = Track(detections[j], self.next_track_id, self.track_lifetime)
            self.tracks.append(new_track)
            self.next_track_id += 1

    # remove dead tracks
    self.tracks = [track for track in self.tracks if not track.is_dead()]

    # return list of track positions
    return [track.prediction.tolist()[0] for track in self.tracks]
登录后复制

以上代码实现了一个简单的SORT跟踪算法,使用Kalman滤波器对目标位置和速度进行预测和估计,然后使用匈牙利算法对目标进行关联,最后根据目标的连续不可见次数判断目标是否死亡并移除死亡的目标。以上代码实现了一个简单的SORT跟踪算法,使用Kalman滤波器对目标位置和速度进行预测和估计,然后使用匈牙利算法对目标进行关联,最后根据目标的连续不可见次数判断目标是否死亡并移除死亡的目标。

除了SORT算法之外,还有许多其他的目标跟踪算法,如卡尔曼滤波、粒子滤波、多目标跟踪等。每种算法都有其适用的场景和优缺点。在实际应用中,需要根据具体场景和需求选择合适的算法进行目标跟踪。

以上是简单介绍SORT跟踪算法及其Python实现示例的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

15个值得推荐的开源免费图像标注工具 15个值得推荐的开源免费图像标注工具 Mar 28, 2024 pm 01:21 PM

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通透!机器学习各大模型原理的深度剖析! 通透!机器学习各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

See all articles