强化学习的定义、分类和算法框架
强化学习(RL)是一种介于有监督学习和无监督学习之间的机器学习算法。它通过不断试错和学习来解决问题。在训练过程中,强化学习会采取一系列决策,并根据执行的操作获得奖励或惩罚。其目标是最大化总奖励。强化学习具有自主学习和适应能力,能够在动态环境下做出优化决策。与传统的监督学习相比,强化学习更适用于没有明确标签的问题,并且可以在长期决策问题中取得良好的效果。
强化学习的核心是根据代理执行的操作来强制执行行为,代理根据行动对总体目标的积极影响来获得奖励。
强化学习算法主要有两种类型:
基于模型与无模型学习算法
基于模型的算法
基于模型的算法使用转换和奖励函数来估计最优策略。在基于模型的强化学习中,代理可以访问环境模型,即从一种状态到另一种状态所需执行的操作、附加的概率和相应的奖励。它们允许强化学习代理通过提前思考来提前计划。
无模型算法
无模型算法是在对环境动态的了解非常有限的情况下找到最优策略。没有任何过渡或奖励来判断最佳政策。直接根据经验估计最优策略,即只有代理与环境之间的交互,没有任何奖励函数的提示。
无模型强化学习应该应用于环境信息不完整的场景,如自动驾驶汽车,在这种情况下,无模型算法优于其他技术。
强化学习最常用的算法框架
马尔可夫决策过程(MDP)
马尔可夫决策过程是一种强化学习算法,它为我们提供了一种形式化顺序决策的方法。这种形式化是强化学习解决的问题的基础。马尔可夫决策过程(MDP)中涉及的组件是一个称为代理的决策制定者,它与其所在的环境进行交互。
在每个时间戳中,代理将获得环境状态的一些表示。给定此表示,代理选择要执行的操作。然后环境会转变为某种新状态,并且代理会因其先前的操作而获得奖励。关于马尔可夫决策过程需要注意的重要一点是,它不担心即时奖励,而是旨在最大化整个轨迹的总奖励。
贝尔曼方程
贝尔曼方程是一类强化学习算法,特别适用于确定性环境。给定状态的值是通过代理所处的状态下可采取的最大行动来确定的。代理的目的是选择将使价值最大化的行动。
因此,它需要增加状态中最佳动作奖励,并添加一个随着时间的推移减少其奖励的折扣因子。每次代理采取行动时,它都会返回到下一个状态。
该方程式不是对多个时间步求和,而是简化了价值函数的计算,使我们能够通过将复杂问题分解为更小的递归子问题来找到最佳解决方案。
Q-Learning
Q-Learning结合了价值函数,质量根据给定当前状态和代理拥有的最佳可能策略的预期未来值分配给状态-动作对作为Q。一旦代理学习了这个Q函数,它就会寻找在特定状态下产生最高质量的最佳可能动作。
通过最优Q函数就可以通过应用强化学习算法来确定最优策略,以找到使每个状态的值最大化的动作。
以上是强化学习的定义、分类和算法框架的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的
