目录
自我博弈
SPIN
主模型的训练
对手模型的更新
SPIN算法
1、初始化参数和SFT数据集
2、生成合成数据(SPIN算法内循环)
3、更新规则
4、训练(SPIN算法外循环)
表现及结果
首页 科技周边 人工智能 使用SPIN技术进行自我博弈微调训练的LLM的优化

使用SPIN技术进行自我博弈微调训练的LLM的优化

Jan 25, 2024 pm 12:21 PM
人工智能 大型语言模型

2024年是大型语言模型(LLM)迅速发展的一年。在LLM的训练中,对齐方法是一个重要的技术手段,其中包括监督微调(SFT)和依赖人类偏好的人类反馈强化学习(RLHF)。这些方法在LLM的发展中起到了至关重要的作用,但是对齐方法需要大量的人工注释数据。面对这一挑战,微调成为一个充满活力的研究领域,研究人员积极致力于开发能够有效利用人类数据的方法。因此,对齐方法的发展将推动LLM技术的进一步突破。

使用SPIN技术进行自我博弈微调训练的LLM的优化

加州大学最近进行了一项研究,介绍了一种名为SPIN(Self Play fIne tuNing)的新技术。SPIN借鉴了AlphaGo Zero和AlphaZero等游戏中成功的自我对弈机制,使LLM(Language Learning Model)能够参与自我游戏。这一技术消除了对专业注释者的需求,无论是人类还是更高级的模型(如GPT-4)。SPIN的训练过程包括训练一个新的语言模型,并通过一系列迭代来区分它自己生成的响应和人类生成的响应。其最终目标是开发出一种语言模型,使其生成的回答与人类的回答没有区别。这一研究的目的在于进一步提升语言模型的自我学习能力,使其更加接近人类的表达和思维方式。这项研究的成果有望为自然语言处理领域的发展带来新的突破。

自我博弈

自我博弈是一种学习技术,通过对抗自身副本来增加学习环境的挑战性和复杂性。这种方法允许代理与自己的不同版本进行交互,从而提高自身的能力。AlphaGo Zero是一个成功的自我博弈案例。

使用SPIN技术进行自我博弈微调训练的LLM的优化

自我博弈在多智能体强化学习(MARL)中已被证实是有效的方法。然而,将其应用于大型语言模型(LLM)的增强是一种新的方法。通过在大型语言模型中应用自我博弈,可以进一步提高它们的能力,使其生成更连贯、信息丰富的文本。这一方法有望推动语言模型的进一步发展和提升。

自我游戏可应用于竞争或合作环境。竞争中,算法副本相互竞争达到目标;合作中,副本一起工作实现共同目标。可与监督学习、强化学习等技术结合,提升性能。

SPIN

SPIN就像一个双人游戏。在这个游戏中:

主模型(新LLM)的角色是学习区分语言模型(LLM)生成的响应和人类创建的响应。每次迭代中,主模型都在积极训练LLM以提高其识别和区分反应的能力。

对手模型(旧LLM)的任务是生成与人类产生的反应相似的结果。它是通过上一轮迭代的LLM产生的,利用自我博弈机制根据过去的知识来生成输出。对手模型的目标是创造逼真的反应,以至于新的LLM无法确定它是由机器生成的。

这个流程是不是很像GAN,但是还是不太一样

SPIN的动态涉及使用监督微调(SFT)数据集,该数据集由输入(x)和输出(y)对组成。这些示例由人工注释,并作为训练主模型识别类人响应的基础。一些公开的SFT数据集包括Dolly15K、Baize、Ultrachat等。

主模型的训练

为了训练主模型区分语言模型(LLM)和人类反应,SPIN使用了一个目标函数。这个函数测量真实数据和对手模型产生的反应之间的预期值差距。主模型的目标是最大化这一期望值差距。这包括将高值分配给与真实数据的响应配对的提示,并将低值分配给由对手模型生成的响应配对。这个目标函数被表述为最小化问题。

主模型的工作是最小化损失函数,即衡量来自真实数据的配对分配值与来自对手模型反应的配对分配值之间的差异。在整个训练过程中,主模型调整其参数以最小化该损失函数。这个迭代过程一直持续下去,直到主模型能够熟练地有效区分LLM的反应和人类的反应。

对手模型的更新

更新对手模型涉及改进主模型的能力,他们在训练时已经学会区分真实数据和语言模型反应。随着主模型的改进及其对特定函数类的理解,我们还需要更新如对手模型的参数。当主玩家面对相同的提示时,它便会使用学习得到的辨别能力去评估它们的价值。

对手模型玩家的目标是增强语言模型,使其响应与主玩家的真实数据无法区分。这就需要设置一个流程来调整语言模型的参数。目的是在保持稳定性的同时,最大限度地提高主模型对语言模型反应的评价。这涉及到一种平衡行为,确保改进不会偏离原始语言模型太远。

听着有点乱,我们简单总结下:

训练的时候只有一个模型,但是将模型分为前一轮的模型(旧LLM/对手模型)和主模型(正在训练的),使用正在训练的模型的输出与上一轮模型的输出作为对比,来优化当前模型的训练。但是这里就要求我们必须要有一个训练好的模型作为对手模型,所以SPIN算法只适合在训练结果上进行微调。

SPIN算法

SPIN从预训练的模型生成合成数据。然后使用这些合成数据对新任务上的模型进行微调。

使用SPIN技术进行自我博弈微调训练的LLM的优化

上面时原始论文中Spin算法的伪代码,看着有点难理解,我们通过Python来复现更好地解释它是如何工作的。

1、初始化参数和SFT数据集

原论文采用Zephyr-7B-SFT-Full作为基本模型。对于数据集,他们使用了更大的Ultrachat200k语料库的子集,该语料库由使用OpenAI的Turbo api生成的大约140万个对话组成。他们随机抽取了50k个提示,并使用基本模型来生成合成响应。

# Import necessary libraries from datasets import load_dataset import pandas as pd  # Load the Ultrachat 200k dataset ultrachat_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")  # Initialize an empty DataFrame combined_df = pd.DataFrame()  # Loop through all the keys in the Ultrachat dataset for key in ultrachat_dataset.keys():# Convert each dataset key to a pandas DataFrame and concatenate it with the existing DataFramecombined_df = pd.concat([combined_df, pd.DataFrame(ultrachat_dataset[key])])  # Shuffle the combined DataFrame and reset the index combined_df = combined_df.sample(frac=1, random_state=123).reset_index(drop=True)  # Select the first 50,000 rows from the shuffled DataFrame ultrachat_50k_sample = combined_df.head(50000)
登录后复制

作者的提示模板“### Instruction: {prompt}nn### Response:”

# for storing each template in a list templates_data = []  for index, row in ultrachat_50k_sample.iterrows():messages = row['messages'] # Check if there are at least two messages (user and assistant)if len(messages) >= 2:user_message = messages[0]['content']assistant_message = messages[1]['content'] # Create the templateinstruction_response_template = f"### Instruction: {user_message}\n\n### Response: {assistant_message}" # Append the template to the listtemplates_data.append({'Template': instruction_response_template})  # Create a new DataFrame with the generated templates (ground truth) ground_truth_df = pd.DataFrame(templates_data)
登录后复制

然后得到了类似下面的数据:

使用SPIN技术进行自我博弈微调训练的LLM的优化

SPIN算法通过迭代更新语言模型(LLM)的参数使其与地面真实响应保持一致。这个过程一直持续下去,直到很难区分生成的响应和真实情况,从而实现高水平的相似性(降低损失)。

SPIN算法有两个循环。内部循环基于我们正在使用的样本数量运行,外部循环总共运行了3次迭代,因为作者发现模型的性能在此之后没有变化。采用Alignment Handbook库作为微调方法的代码库,结合DeepSpeed模块,降低了训练成本。他们用RMSProp优化器训练Zephyr-7B-SFT-Full,所有迭代都没有权重衰减,就像通常用于微调llm一样。全局批大小设置为64,使用bfloat16精度。迭代0和1的峰值学习率设置为5e-7,迭代2和3的峰值学习率随着循环接近自播放微调的结束而衰减为1e-7。最后选择β = 0.1,最大序列长度设置为2048个标记。下面就是这些参数

 # Importing the PyTorch library import torch  # Importing the neural network module from PyTorch import torch.nn as nn  # Importing the DeepSpeed library for distributed training import deepspeed  # Importing the AutoTokenizer and AutoModelForCausalLM classes from the transformers library from transformers import AutoTokenizer, AutoModelForCausalLM  # Loading the zephyr-7b-sft-full model from HuggingFace tokenizer = AutoTokenizer.from_pretrained("alignment-handbook/zephyr-7b-sft-full") model = AutoModelForCausalLM.from_pretrained("alignment-handbook/zephyr-7b-sft-full")  # Initializing DeepSpeed Zero with specific configuration settings deepspeed_config = deepspeed.config.Config(train_batch_size=64, train_micro_batch_size_per_gpu=4) model, optimizer, _, _ = deepspeed.initialize(model=model, config=deepspeed_config, model_parameters=model.parameters())  # Defining the optimizer and setting the learning rate using RMSprop optimizer = deepspeed.optim.RMSprop(optimizer, lr=5e-7)  # Setting up a learning rate scheduler using LambdaLR from PyTorch scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: 0.2 ** epoch)  # Setting hyperparameters for training num_epochs = 3 max_seq_length = 2048 beta = 0.1
登录后复制

2、生成合成数据(SPIN算法内循环)

这个内部循环负责生成需要与真实数据保持一致的响应,也就是一个训练批次的代码

# zephyr-sft-dataframe (that contains output that will be improved while training) zephyr_sft_output = pd.DataFrame(columns=['prompt', 'generated_output'])  # Looping through each row in the 'ultrachat_50k_sample' dataframe for index, row in ultrachat_50k_sample.iterrows():# Extracting the 'prompt' column value from the current rowprompt = row['prompt'] # Generating output for the current prompt using the Zephyr modelinput_ids = tokenizer(prompt, return_tensors="pt").input_idsoutput = model.generate(input_ids, max_length=200, num_beams=5, no_repeat_ngram_size=2, top_k=50, top_p=0.95) # Decoding the generated output to human-readable textgenerated_text = tokenizer.decode(output[0], skip_special_tokens=True) # Appending the current prompt and its generated output to the new dataframe 'zephyr_sft_output'zephyr_sft_output = zephyr_sft_output.append({'prompt': prompt, 'generated_output': generated_text}, ignore_index=True)
登录后复制

这就是一个提示的真实值和模型输出的样例。

使用SPIN技术进行自我博弈微调训练的LLM的优化

新的df zephyr_sft_output,其中包含提示及其通过基本模型Zephyr-7B-SFT-Full生成的相应输出。

3、更新规则

在编码最小化问题之前,理解如何计算llm生成的输出的条件概率分布是至关重要的。原论文使用马尔可夫过程,其中条件概率分布pθ (y∣x)可通过分解表示为:

使用SPIN技术进行自我博弈微调训练的LLM的优化

这种分解意味着给定输入序列的输出序列的概率可以通过将给定输入序列的每个输出标记与前一个输出标记的概率相乘来计算。例如输出序列为“I enjoy reading books”,输入序列为“I enjoy”,则在给定输入序列的情况下,输出序列的条件概率可以计算为:

使用SPIN技术进行自我博弈微调训练的LLM的优化

马尔可夫过程条件概率将用于计算真值和Zephyr LLM响应的概率分布,然后用于计算损失函数。但首先我们需要对条件概率函数进行编码。

 # Conditional Probability Function of input text def compute_conditional_probability(tokenizer, model, input_text):# Tokenize the input text and convert it to PyTorch tensorsinputs = tokenizer([input_text], return_tensors="pt") # Generate text using the model, specifying additional parametersoutputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True) # Assuming 'transition_scores' is the logits for the generated tokenstransition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) # Get the length of the input sequenceinput_length = inputs.input_ids.shape[1] # Assuming 'transition_scores' is the logits for the generated tokenslogits = torch.tensor(transition_scores) # Apply softmax to obtain probabilitiesprobs = torch.nn.functional.softmax(logits, dim=-1) # Extract the generated tokens from the outputgenerated_tokens = outputs.sequences[:, input_length:] # Compute conditional probabilityconditional_probability = 1.0for prob in probs[0]:token_probability = prob.item()conditional_probability *= token_probability return conditional_probability
登录后复制

损失函数它包含四个重要的条件概率变量。这些变量中的每一个都取决于基础真实数据或先前创建的合成数据。

使用SPIN技术进行自我博弈微调训练的LLM的优化

而lambda是一个正则化参数,用于控制偏差。在KL正则化项中使用它来惩罚对手模型的分布与目标数据分布之间的差异。论文中没有明确提到lambda的具体值,因为它可能会根据所使用的特定任务和数据集进行调优。

 def LSPIN_loss(model, updated_model, tokenizer, input_text, lambda_val=0.01):# Initialize conditional probability using the original model and input textcp = compute_conditional_probability(tokenizer, model, input_text) # Update conditional probability using the updated model and input textcp_updated = compute_conditional_probability(tokenizer, updated_model, input_text) # Calculate conditional probabilities for ground truth datap_theta_ground_truth = cp(tokenizer, model, input_text)p_theta_t_ground_truth = cp(tokenizer, model, input_text) # Calculate conditional probabilities for synthetic datap_theta_synthetic = cp_updated(tokenizer, updated_model, input_text)p_theta_t_synthetic = cp_updated(tokenizer, updated_model, input_text) # Calculate likelihood ratioslr_ground_truth = p_theta_ground_truth / p_theta_t_ground_truthlr_synthetic = p_theta_synthetic / p_theta_t_synthetic # Compute the LSPIN lossloss = lambda_val * torch.log(lr_ground_truth) - lambda_val * torch.log(lr_synthetic) return loss
登录后复制

如果你有一个大的数据集,可以使用一个较小的lambda值,或者如果你有一个小的数据集,则可能需要使用一个较大的lambda值来防止过拟合。由于我们数据集大小为50k,所以可以使用0.01作为lambda的值。

4、训练(SPIN算法外循环)

这就是Pytorch训练的一个基本流程,就不详细解释了:

# Training loop for epoch in range(num_epochs): # Model with initial parametersinitial_model = AutoModelForCausalLM.from_pretrained("alignment-handbook/zephyr-7b-sft-full") # Update the learning ratescheduler.step() # Initialize total loss for the epochtotal_loss = 0.0 # Generating Synthetic Data (Inner loop)for index, row in ultrachat_50k_sample.iterrows(): # Rest of the code ... # Output == prompt response dataframezephyr_sft_output # Computing loss using LSPIN functionfor (index1, row1), (index2, row2) in zip(ultrachat_50k_sample.iterrows(), zephyr_sft_output.iterrows()):# Assuming 'prompt' and 'generated_output' are the relevant columns in zephyr_sft_outputprompt = row1['prompt']generated_output = row2['generated_output'] # Compute LSPIN lossupdated_model = model # It will be replacing with updated modelloss = LSPIN_loss(initial_model, updated_model, tokenizer, prompt) # Accumulate the losstotal_loss += loss.item() # Backward passloss.backward() # Update the parametersoptimizer.step() # Update the value of betaif epoch == 2:beta = 5.0
登录后复制

我们运行3个epoch,它将进行训练并生成最终的Zephyr SFT LLM版本。官方实现还没有在GitHub上开源,这个版本将能够在某种程度上产生类似于人类反应的输出。我们看看他的运行流程

使用SPIN技术进行自我博弈微调训练的LLM的优化

表现及结果

SPIN可以显著提高LLM在各种基准测试中的性能,甚至超过通过直接偏好优化(DPO)补充额外的GPT-4偏好数据训练的模型。

使用SPIN技术进行自我博弈微调训练的LLM的优化

当我们继续训练时,随着时间的推移,进步会变得越来越小。这表明模型达到了一个阈值,进一步的迭代不会带来显著的收益。这是我们训练数据中样本提示符每次迭代后的响应。

使用SPIN技术进行自我博弈微调训练的LLM的优化

以上是使用SPIN技术进行自我博弈微调训练的LLM的优化的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles