Gartner 预测:2024 年全球IT支出将增长6.8%
尽管科技行业出现了裁员潮,但IT市场仍在持续增长。根据Gartner的最新报告,全球IT支出预计将在2024年达到5万亿美元,增长率为6.8%,这表明IT行业仍然具有强大的发展潜力。
Gartner最新报告是针对IT支出的研究和咨询,提供了一个独特的视角。他们先前预测IT支出的增长率为8%,尽管他们对预测进行了调整,但仍然预计IT支出的增长率将超过前一年的两倍。这个报告涵盖了IT服务、硬件和软件等不同领域的支出。作为领先的市场研究和咨询公司,Gartner的观点对于了解IT行业的发展趋势和市场走向非常有价值。
值得注意的是,根据Gartner的数据,GenAI(生成式人工智能)在短期内不会显着改变IT支出的增长。
根据Gartner杰出副总裁分析师John-David Lovelock的说法,虽然GenAI将带来重大变革,但与物联网、区块链等技术趋势相比,对IT支出的影响不会那么显着。
根据Lovelock的说法,2024年将更多地关注如何有效利用GenAI。 IT支出的主要份额将继续受到劳动力和盈利能力等传统因素的驱动。然而,这些支出将受到持续的“变革疲劳”浪潮的负面影响,即组织感到被过多的变革所淹没。因此,组织将需要采取适当的措施来缓解这种疲劳,例如更加精确地规划变革策略、提供充分的培训和支持等。
根据Gartner的报告,CIO们普遍面临变革疲劳问题,对于长期计划和新技术合作伙伴的接受度越来越低。他们希望能更确定地了解新举措的结果,并降低风险。
尽管面临着变革疲劳的挑战,但预计到2024年,IT服务将实现8.7%的最大增长,成为IT支出的主要部分,达到1.5万亿美元。这一空前增长的背后,关键驱动因素是企业对项目优化和组织效率的投资增加。
根据预测,在2023年IT支出大幅下降后,预计到2024年将实现4.6%的健康增长。疫情期间IT设备支出过度增长导致了2023年设备支出的崩溃。然而,随着经济逐渐恢复,IT设备的需求预计将会反弹,为行业带来新的增长机遇。
数据中心系统和软件的支出持续增长,增长率分别为7.5%和8.7%。根据Gartner的预测,通信服务行业的增长率最低,仅占IT总支出的2.3%。
虽然IT传统上是一个后台功能,但现在已经成为一个主要的收入线。 “十多年前,消费者对设备和通信服务的采用率停滞不前。消费者支出水平主要由价格变化和更换周期驱动,只留下增量增长的空间,因此被软件和服务超越是不可避免的。” Lovelock说。
Gartner的报告揭示了市场机遇和挑战。能够在IT服务领域进行明智投资的企业将处于有利地位,能够从这个快速发展的领域中获得长期回报。
以上是Gartner 预测:2024 年全球IT支出将增长6.8%的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
