目录
方法介绍
实验结果
首页 科技周边 人工智能 多个异构大模型的融合带来惊人效果

多个异构大模型的融合带来惊人效果

Jan 29, 2024 am 09:12 AM
ai 模型

随着LLaMA、Mistral等大语言模型的成功,许多公司开始创建自己的大语言模型。然而,从头训练新的模型成本高昂,且可能存在能力冗余。

近日,中山大学和腾讯 AI Lab 的研究人员提出了 FuseLLM,用于「融合多个异构大模型」。

与传统的模型集成和权重合并方法不同,FuseLLM提供了一种新的方式来融合多个异构大语言模型的知识。与同时部署多个大语言模型或要求合并模型结果不同,FuseLLM使用轻量级的持续训练方法,将各个模型的知识和能力转移到一个融合的大语言模型中。这种方法的独特之处在于它能够在推理时使用多个异构大语言模型,并将它们的知识外化到融合模型中。通过这种方式,FuseLLM有效地提高了模型的性能和效率。

该论文刚刚在 arXiv 上发布就引起了网友的大量关注和转发。

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效


有人觉得在另一种语言上训练模型很有趣,我一直在思考这个问题。


Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

目前该论文已被 ICLR 2024 接受。

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效


  • 论文标题:Knowledge Fusion of Large Language Models
  • 论文地址:https://arxiv.org/abs/2401.10491
  • 论文仓库:https://github.com/fanqiwan/FuseLLM

方法介绍

FuseLLM 的关键在于从概率分布表征的角度来探讨大语言模型的融合,对于同样的输入文本,作者认为由不同大语言模型生成的表征可以反映出它们在理解这些文本时的内在知识。因此,FuseLLM 首先利用多个源大语言模型生成表征,将它们的集体知识和各自优势外化,然后将生成的多个表征取长补短进行融合,最后经过轻量级的持续训练迁移到目标大语言模型。下图展示了 FuseLLM 方法的概述。

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

考虑到多个异构大语言模型的 tokenizer 以及词表存在差异,在融合多个表征时,如何对齐分词结果是一大关键: FuseLLM 在 token 级别的完全匹配之上,额外设计了基于最小编辑距离的词表级别对齐,最大程度地保留了表征中的可用信息。

为了在结合多个大语言模型的集体知识的同时保持其各自的优势,需要精心设计用于融合模型生成表征的策略。具体而言,FuseLLM 通过计算生成表征和标签文本之间交叉熵来评估不同大语言模型对这条文本的理解程度,然后引入了两种基于交叉熵的融合函数:

  • MinCE: 输入多个大模型为当前文本生成的表征,输出交叉熵最小的表征;
  • AvgCE: 输入多个大模型为当前文本生成的表征,输出基于交叉熵获得的权重加权平均的表征;

在持续训练阶段,FuseLLM 使用融合后的表征作为目标计算融合损失,同时也保留了语言模型损失。最终的损失函数为融合损失和语言模型损失之和。

实验结果

在实验部分,作者考虑了一个通用但具有挑战性的大语言模型融合场景,其中源模型在结构或能力上具备较小的共性。具体来说,其在 7B 规模上进行了实验,并选择了三个具有代表性的开源模型:Llama-2、OpenLLaMA,和 MPT 作为待融合的大模型。

作者在通用推理、常识推理、代码生成、文本生成、指令跟随等场景评估了 FuseLLM,发现其相较于所有源模型和继续训练基线模型取得了显着的性能提升。

通用推理& 常识推理

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

在测试通用推理能力的Big-Bench Hard Benchmark 上,经过持续训练后的Llama-2 CLM 相较于Llama-2 在27个任务上取得了平均1.86% 的提升,而FuseLLM 则相较于Llama-2 取得了5.16% 的提升,显着优于Llama-2 CLM,说明FuseLLM 能结合多个大语言模型的优势取得性能提升。

在测试常识推理能力的 Common Sense Benchmark 上,FuseLLM 超过了所有的源模型和基线模型,在所有任务上都取得了最佳的性能。

代码生成& 文本生成

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

在测试代码生成能力的MultiPL-E Benchmark 上,FuseLLM 在10 个任务中,有9 个超过了Llama-2,取得了平均6.36% 的性能提升。而 FuseLLM 没有超过 MPT 和 OpenLLaMA 的原因可能是由于使用 Llama-2 作为目标大语言模型,其代码生成能力较弱,且持续训练语料中的代码数据比例较低,仅占约 7.59%。

在多个测量知识问答(TrivialQA)、阅读理解(DROP)、内容分析(LAMBADA)、机器翻译(IWSLT2017)和定理应用(SciBench)的文本生成Benchmark 上,FuseLLM 也在所有任务中超过了所有源模型,并在80% 的任务中超过了Llama-2 CLM。

指令跟随

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

由于FuseLLM 仅需提取多个源模型的表征进行融合,然后对目标模型持续训练,因此其也能适用于指令微调大语言模型的融合。在评估指令跟随能力的 Vicuna Benchmark 上,FuseLLM 同样取得了出色表现,超过了所有源模型和 CLM。

FuseLLM vs. 知识蒸馏& 模型集成& 权重合并

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

考虑到知识蒸馏也是一种利用表征提升大语言模型性能的方法,作者将FuseLLM 和用Llama- 2 13B 蒸馏的Llama-2 KD 进行了比较。结果表明,FuseLLM 通过融合三个具有不同架构的 7B 模型,超过了从单个 13B 模型蒸馏的效果。

Llama-2+Mistral+MPT=? 融合多个异构大模型显奇效

为了将FuseLLM 与现有融合方法进行比较(例如模型集成和权重合并),作者模拟了多个源模型来自相同结构的底座模型,但在不同的语料库上持续训练的场景,并测试了各种方法在不同测试基准上的困惑度。可以看到虽然所有的融合技术都可以结合多个源模型的优势,但 FuseLLM 能达到最低的平均困惑度,表明 FuseLLM 具备能比模型集成和权重合并方法更有效地结合源模型集体知识的潜力。

最后,尽管社区目前已经关注大模型的融合,但目前的做法大多基于权重合并,无法扩展到不同结构、不同规模的模型融合场景。虽然FuseLLM 只是一项初步的异构模型融合研究,但考虑到目前技术社区存在大量不同的结构和规模的语言、视觉、音频和多模态大模型,未来这些异构模型的融合会迸发出怎样惊人地表现呢?让我们拭目以待!

以上是多个异构大模型的融合带来惊人效果的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Debian Apache日志级别如何设置 Debian Apache日志级别如何设置 Apr 13, 2025 am 08:33 AM

本文介绍如何在Debian系统中调整ApacheWeb服务器的日志记录级别。通过修改配置文件,您可以控制Apache记录的日志信息的详细程度。方法一:修改主配置文件定位配置文件:Apache2.x的配置文件通常位于/etc/apache2/目录下,文件名可能是apache2.conf或httpd.conf,具体取决于您的安装方式。编辑配置文件:使用文本编辑器(例如nano)以root权限打开配置文件:sudonano/etc/apache2/apache2.conf

如何优化debian readdir的性能 如何优化debian readdir的性能 Apr 13, 2025 am 08:48 AM

在Debian系统中,readdir系统调用用于读取目录内容。如果其性能表现不佳,可尝试以下优化策略:精简目录文件数量:尽可能将大型目录拆分成多个小型目录,降低每次readdir调用处理的项目数量。启用目录内容缓存:构建缓存机制,定期或在目录内容变更时更新缓存,减少对readdir的频繁调用。内存缓存(如Memcached或Redis)或本地缓存(如文件或数据库)均可考虑。采用高效数据结构:如果自行实现目录遍历,选择更高效的数据结构(例如哈希表而非线性搜索)存储和访问目录信

debian readdir如何实现文件排序 debian readdir如何实现文件排序 Apr 13, 2025 am 09:06 AM

在Debian系统中,readdir函数用于读取目录内容,但其返回的顺序并非预先定义的。要对目录中的文件进行排序,需要先读取所有文件,再利用qsort函数进行排序。以下代码演示了如何在Debian系统中使用readdir和qsort对目录文件进行排序:#include#include#include#include//自定义比较函数,用于qsortintcompare(constvoid*a,constvoid*b){returnstrcmp(*(

Debian邮件服务器防火墙配置技巧 Debian邮件服务器防火墙配置技巧 Apr 13, 2025 am 11:42 AM

配置Debian邮件服务器的防火墙是确保服务器安全性的重要步骤。以下是几种常用的防火墙配置方法,包括iptables和firewalld的使用。使用iptables配置防火墙安装iptables(如果尚未安装):sudoapt-getupdatesudoapt-getinstalliptables查看当前iptables规则:sudoiptables-L配置

Debian邮件服务器SSL证书安装方法 Debian邮件服务器SSL证书安装方法 Apr 13, 2025 am 11:39 AM

在Debian邮件服务器上安装SSL证书的步骤如下:1.安装OpenSSL工具包首先,确保你的系统上已经安装了OpenSSL工具包。如果没有安装,可以使用以下命令进行安装:sudoapt-getupdatesudoapt-getinstallopenssl2.生成私钥和证书请求接下来,使用OpenSSL生成一个2048位的RSA私钥和一个证书请求(CSR):openss

debian readdir如何与其他工具集成 debian readdir如何与其他工具集成 Apr 13, 2025 am 09:42 AM

Debian系统中的readdir函数是用于读取目录内容的系统调用,常用于C语言编程。本文将介绍如何将readdir与其他工具集成,以增强其功能。方法一:C语言程序与管道结合首先,编写一个C程序调用readdir函数并输出结果:#include#include#includeintmain(intargc,char*argv[]){DIR*dir;structdirent*entry;if(argc!=2){

Debian OpenSSL如何防止中间人攻击 Debian OpenSSL如何防止中间人攻击 Apr 13, 2025 am 10:30 AM

在Debian系统中,OpenSSL是一个重要的库,用于加密、解密和证书管理。为了防止中间人攻击(MITM),可以采取以下措施:使用HTTPS:确保所有网络请求使用HTTPS协议,而不是HTTP。HTTPS使用TLS(传输层安全协议)加密通信数据,确保数据在传输过程中不会被窃取或篡改。验证服务器证书:在客户端手动验证服务器证书,确保其可信。可以通过URLSession的委托方法来手动验证服务器

Debian Hadoop日志管理怎么做 Debian Hadoop日志管理怎么做 Apr 13, 2025 am 10:45 AM

在Debian上管理Hadoop日志,可以遵循以下步骤和最佳实践:日志聚合启用日志聚合:在yarn-site.xml文件中设置yarn.log-aggregation-enable为true,以启用日志聚合功能。配置日志保留策略:设置yarn.log-aggregation.retain-seconds来定义日志的保留时间,例如保留172800秒(2天)。指定日志存储路径:通过yarn.n

See all articles