匿名论文提出奇招!增强大模型长文本能力居然还能这么做
一提到提高大模型长文本能力,就想到长度外推或者上下文窗口扩展?
不行,这些都太费硬件资源了。
来看一个奇妙新解:
和长度外推等方法使用KV缓存的本质不同,它用模型的参数来存储大量上下文信息。
具体办法就是建一个临时Lora模块,让它仅在长文本生成过程中“流式更新”,也就是用先前生成的内容不断作为输入来充当训练数据,以此保证知识被存进模型参数中。
然后一旦推理完成,就丢掉它,保证不对模型参数产生长久影响。
这个方法可以让我们不用扩展上下文窗口的同时,随便存储上下文信息,想存多少存多少。
实验证明,这种方法:
- 既可以显着提高模型长文本任务质量,实现困惑度下降29.6%,长文本翻译质量(BLUE得分)提高53.2%;
- 还能兼容并增强现有大多数长文本生成方法。
- 最重要的是,能大大降低计算成本。
在保证生成质量小幅提升(困惑度降低3.8%)的同时,推理所需的FLOPs降低70.5%、延迟降低51.5%!
具体情况,我们翻开论文来看。
建个临时Lora模块用完即丢
该方法名叫Temp-Lora,架构图如下:
其核心就是以自回归的方式用先前生成的文本上逐步训练临时Lora模块。
该模块适应性很强可以不断调整,因此对不同远近的上下文都能深入理解。
具体算法如下:
在生成过程中,token是逐块生成的。每次生成块时,使用最新的Lxtoken作为输入X生成后续token。
一旦生成的token数量达到预定义的区块大小∆,就使用最新的块启动Temp-Lora模块的训练,然后开始下一个块生成。
在实验中,作者将∆+Lx设置为W,以充分利用模型的上下文窗口大小。
对于Temp-Lora模块的训练,如果在没有任何条件的情况下,学习生成新的块可能构不成有效的训练目标,并导致严重的过拟合。
为了解决这个问题,作者将每个块前面的LT标记合并到训练过程中,将它们用作输入,将块用作输出。
最后,作者还提出了一种称为缓存重用(Cache Reuse)策略来实现更高效的推理。
一般来说,在标准框架中更新Temp-Loramo模块后,我们需要使用更新的参数重新计算KV状态。
或者,重用现有的缓存KV状态,同时使用更新的模型进行后续的文本生成。
具体来说,只有当模型生成最大长度(上下文窗口大小W)时,我们才使用最新的Temp-Lora模块重新计算KV状态。
这样的缓存重用方法就可以在不显着影响生成质量的情况下加快生成速度。
关于Temp-Lora方法的介绍就这么多,下面主要看测试。
文本越长,效果越好
作者在Llama2-7B-4K、Llama2-13B-4K、Llama2-7B-32K以及Yi-Chat-6B模型上上对Temp-Lora框架进行了评估,并涵盖生成和翻译这两类长文本任务。
测试数据集一个是长文本语言建模基准PG19的子集,从中随机抽取了40本书。
另一个是来自WMT 2023的国风数据集的随机抽样子集,包含20部中文网络小说,由专业人员翻译成英文。
首先来看PG19上的结果。
下表显示了PG19上带有和不带有Temp-Lora模块的各种型号的PPL(困惑度,反映模型对于给定输入的不确定性,越低越好)比较。将每个文档划分为0-100K到500K+token的片段。
可以看到,所有型号经过Temp-Lora之后PPL都显着下降,并且随着片段越来越长,Temp-Lora的影响更加明显(1-100K仅降低3.6%,500K+降低13.2%) 。
因此,我们可以简单地得出结论:文本越多,使用Temp-Lora的必要性就越强。
此外我们还能发现,将块大小从1024调整到2048和4096导致PPL略有增加。
这倒是不奇怪,毕竟Temp-Lora模块是在之前块的数据上训练的。
这个数据主要是告诉我们块大小的选择是生成质量和计算效率之间的关键权衡(进一步分析可以查阅论文)。
最后,我们还能从中发现,缓存重复使用不会导致任何性能损失。
作者表示:这是一个非常令人鼓舞的消息。
下面是国风数据集上的结果。
可以看到,Temp-Lora对长文本文学翻译任务也有显着影响。
与基础模型相比,所有指标都有显着改进:PPL降低了-29.6%,BLEU得分(机器翻译文本与高质量参考翻译的相似度)提高了+53.2%,COMET得分(也是一个质量指标)提高了+8.4%。
最后,是计算效率和质量方面的探索。
作者经实验发现,使用最“经济”的Temp-Lora配置(∆=2K,W=4K),能将PPL降低3.8%的同时,节省70.5%的FLOP和51.5%的延迟。
相反,如果我们完全忽略计算成本,使用最“豪华”的配置(∆=1K和W=24K),也可以实现5.0%的PPL降低,并额外增加17%的FLOP和19.6%的延迟。
使用建议
总结以上结果,作者也给出了实际应用Temp-Lora的三点建议:
1、对于需要最高级别长文本生成的应用,在不更改任何参数的情况下,集成Temp -Lora到现有模型中,就能以相对适中的成本显着提高性能。
2、对于看重最小延迟或内存使用的应用,可以通过减少输入长度和在Temp-Lora中存储的上下文信息来显着降低计算成本。
在这种设置下,我们可以使用固定的短窗口大小(如2K或4K)来处理几乎无限长的文本(在作者的实验中为500K+)。
3、最后,请注意,在不含大量文本的场景中,例如预训练中上下文比模型的窗口大小还小,Temp-Lora就是毫无用处的。
作者来自保密机构
值得一提的是,发明这么简单又创新的办法,作者却没有留下太多出处信息:
机构名称直接落款“保密机构”,三位作者的名字也只有完整的姓。
不过从邮箱信息来看,可能来自港城大、港中文等学校。
最最后,对于这个方法,你觉得怎么样?
论文: https://www.php.cn/link/f74e95cf0ef6ccd85c791b5d351aa327
以上是匿名论文提出奇招!增强大模型长文本能力居然还能这么做的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
