目录
1、整体介绍
2、模型结构
3、图增强模块
4、图对比模块
5、实验效果
首页 科技周边 人工智能 图感知对比学习提升多变量时间序列分类效果

图感知对比学习提升多变量时间序列分类效果

Feb 04, 2024 pm 02:54 PM
时间序列 传感器 mts

这篇AAAI 2024中的论文由新加坡科技研究局(A*STAR)和新加坡南洋理工大学合作发表,提出了一种利用图感知对比学习来改善多变量时间序列分类的方法。实验结果显示,该方法在提升时间序列分类效果方面取得了显着的成果。

图感知对比学习提升多变量时间序列分类效果图片

论文标题:Graph-Aware Contrasting for Multivariate Time-Series Classification

下载地址:https://arxiv.org/pdf/2309.05202.pdf

开源代码:https://github. com/Frank-Wang-oss/TS-GAC

1、整体介绍

作者在针对现有对比学习方法的基础上,提出了一种名为图感知对比(TS-GAC)的方法,该方法旨在解决MTS数据中多传感器的空间一致性问题。 TS-GAC包括两个主要组成部分:图增强和图对比。图增强通过节点和连边增强来提高空间一致性,以保持传感器的稳定性和相关性。而图对比则引入了多窗口时间对比来维持时间一致性。 通过广泛的实验验证,该方法在各种MTS分类任务上取得了最优性能。研究结果强调了在MTS数据的对比学习中考虑空间一致性的重要性,并提供了一个全面的解决方案,显着改善了分类性能。这一研究对于进一步提高对比学习的效果具有重要意义,并为处理MTS数据提供了有力的工具。

图感知对比学习提升多变量时间序列分类效果图片

2、模型结构

本文提出的方法主要包括图增强和图对比两个部分。

为了有效地增强MTS数据,我们引入了节点和连边的增强来生成弱视图和强视图。节点增强包括频域和时域增强,以充分增强图节点。首先,我们应用频域增强来增强节点,然后根据MTS数据中的动态局部模式,将增强后的样本分割成多个窗口(如图2所示)。在每个窗口中,我们使用节点时间增强,并通过一维卷积神经网络对窗口进行特征提取。随后,我们对每个窗口构建图,并通过连边增强进一步增强图。最后,我们使用基于图神经网络的编码器对图进行处理和特征学习。

图感知对比学习提升多变量时间序列分类效果图片

图对比:包括节点级对比和图级对比,以实现空间一致性。节点级对比通过在不同视图中将相应的传感器拉近、将不同视图中的不同传感器推远,确保节点特征的鲁棒性。图级对比则进一步确保全局特征的鲁棒性,通过对比不同视图中的样本来实现。

该架构的目标是在对比学习中实现空间一致性,针对MTS分类提供了特定的增强和对比技术。通过首先应用节点增强,然后利用节点内的时间增强,以及最终通过GNN处理的边缘增强,该方法能够为每个样本生成具有不同空间和时间特性的弱视图和强视图。这种方法的创新之处在于,它不仅考虑了时间一致性,还通过图结构增强了空间一致性,为MTS数据的深入分析和处理提供了新的视角。

3、图增强模块

针对MTS数据的特性,即作为由多个传感器收集的数据,作者提出了节点和连边增强两种主要方法:

节点增强:分为频域增强和时域增强。频域增强通过将每个传感器的信号转换到频域,并对提取的频率特征进行增强,然后将增强的频率特征转换回时间域以获得增强信号。具体采用了离散小波变换,通过高通和低通滤波器分解信号,以表示信号内的宏观趋势和微观趋势。时域增强则是考虑到MTS数据的动态特性,通过将每个MTS样本分割成多个窗口,并在每个窗口内进行时域增强。

连边增强:旨在增强传感器间的相关性,即构建的图中的边。首先通过图构建过程来定义节点(传感器)和边(传感器间的相关性)。然后,通过连边增强方法有效地增强传感器间的相关性。在这一步骤中,考虑到强相关性比弱相关性在GNN的特征传播中更为重要,因此在进行边缘增强时,保留了最强的s个相关性以保证拓扑信息的稳定,并将其余的相关性用随机值替换来增强连边。

通过这些增强策略,作者旨在生成弱视图和强视图,以便后续的对比学习过程能够学习到鲁棒的传感器特征和传感器间关系。这些增强策略的设计考虑到了MTS数据的多源性和动态性,通过提供不同角度的数据视图,增强了CL的能力,从而可以学习到更鲁棒和泛化的表示。

4、图对比模块

文中提出了图感知对比方法,该方法特别设计了节点和边缘增强以及图对比策略,以增强MTS数据的空间一致性。主要包括多窗口时间对比、节点级对比、图级对比3个级别的对比方式。

多窗口时间对比(Multi-Window Temporal Contrasting, MWTC):这一方法在传感器级别上保证每个传感器的时间一致性,通过预测编码来维持MTS数据内时间依赖性的鲁棒性。MWTC通过总结一个视图中的过去窗口信息,与另一视图的未来窗口进行对比,以此来保持时间模式的鲁棒性。

节点级对比(Node-level Contrasting, NC):NC通过在每个MTS样本内不同视图中的传感器进行对比,学习鲁棒的传感器级特征。这包括最大化两个视图中对应传感器之间的相似性,同时最小化那些视图中不同传感器之间的相似性。

图级对比(Graph-level Contrasting, GC):GC通过在每个训练批次内对样本进行对比,促进鲁棒的全局级特征学习。这一策略通过最大化两个视图中对应样本之间的相似性,同时最小化那些视图中不同样本之间的相似性来实现。

这些对比学习策略共同工作,旨在通过图结构增强MTS数据的表示学习,进而提高分类准确性。文章还强调了时间对比对于保持每个传感器时间一致性的重要性,以及图对比在学习传感器和全局级鲁棒特征中的作用。通过结合节点级和图级对比,该方法能够有效地学习MTS数据中的复杂空间和时间模式,实现对MTS分类性能的显著提升。

5、实验效果

在实验部分,文中对比了在十个公开的多变量时间序列数据集上的性能表现,并与现有的最先进方法进行了比较。这些数据集包括人类活动识别(HAR)、ISRUC睡眠阶段分类,以及UEA数据集中的子数据集,如手指运动、口语阿拉伯数字等。为了公平对比,所有方法都使用了相同的编码器。实验结果显示,TS-GAC在其中八个数据集上取得了最佳性能,特别是在HAR和ISRUC数据集上,相较于其他方法,准确率分别提高了1.44%和3.13%。

图感知对比学习提升多变量时间序列分类效果图片

同时,作者还对模型特征进行了可视化,可视化结果实现了TS-GAC可以提取更有辨识度的传感器级特征。同时,相对于其他方法,TS-GAC可以对不同视角的数据得到更加一致的传感器级特征。

图感知对比学习提升多变量时间序列分类效果图片

作者还进行了消融研究,以评估设计的增强和对比技术对模型性能的影响。消融研究测试了不同变体,包括去除节点增强、去除边缘增强、去除图级对比、去除节点级对比、去除多窗口时间对比的变体。结果表明,图增强和图对比技术在提高MTS数据的空间一致性方面极为有效,完全的TS-GAC相较于任何一种减少对比损失的变体都表现出了更好的性能。

图感知对比学习提升多变量时间序列分类效果图片

此外,作者还对模型的敏感性进行了分析,包括超参数(如λMWTC、λGC、λNC)的影响和保留边缘数量的影响。这些分析进一步证实了所提出方法的有效性和健壮性。

整体而言,实验结果强调了TS-GAC在多个MTS分类任务上达到最优性能的能力,证明了提出的图增强和图对比技术在提高模型对MTS数据的空间一致性方面的重要性和有效性。

以上是图感知对比学习提升多变量时间序列分类效果的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

MHz已成为历史! 微软Windows 11内存速度单位切换到 MT/s MHz已成为历史! 微软Windows 11内存速度单位切换到 MT/s Jun 25, 2024 pm 05:10 PM

数码硬件爱好者朋友都知道,最近这些年坊间一直存在两种内存参数标注单位,分别是“MHz”和“MT/s”,对于数码小白来说,可能比较困扰。 “MHz”和“MT/s”都是衡量内存传输性能的指标,但是它们还是有显着的区别。 MHz代表内存模块每秒可以执行多少百万个周期,每个周期都是在内存模块上执行的操作,例如存储和检索数据。但是由于当前技术飞速发展,新技术使DDR内存能够增加数据传输速率而不增加时钟速度,旧的内存测量方法也

如何使用C#编写时间序列预测算法 如何使用C#编写时间序列预测算法 Sep 19, 2023 pm 02:33 PM

如何使用C#编写时间序列预测算法时间序列预测是一种通过分析过去的数据来预测未来数据趋势的方法。它在很多领域,如金融、销售和天气预报中有广泛的应用。在本文中,我们将介绍如何使用C#编写时间序列预测算法,并附上具体的代码示例。数据准备在进行时间序列预测之前,首先需要准备好数据。一般来说,时间序列数据应该具有足够的长度,并且是按照时间顺序排列的。你可以从数据库或者

Wow Awesome!三星 Galaxy Ring 体验:2999 元的真 · 智能戒指 Wow Awesome!三星 Galaxy Ring 体验:2999 元的真 · 智能戒指 Jul 19, 2024 pm 02:31 PM

三星在7月17日正式发布了国行版的三星GalaxyRing,定价2999元。GalaxyRing的真机,真就是2024版的"WowAwesome,这是我独享的moment"。它是近几年除苹果VisionPro之外,让我们感觉最新鲜的电子产品(虽然听起来像是在立flag)。(图中,左右两边的戒指,就是GalaxyRing↑)三星GalaxyRing规格(国行官网数据):ZephyrRTOS系统,8MB存储;10ATM防水+IP68;电池容量18mAh到23.5mAh(不同尺码的

如何使用XGBoost和InluxDB进行时间序列预测 如何使用XGBoost和InluxDB进行时间序列预测 Apr 04, 2023 pm 12:40 PM

XGBoost是一个流行的开源机器学习库,可用于解决各种预测问题。人们需要了解如何使用它与InfluxDB进行时间序列预测。 译者 | 李睿审校 | 孙淑娟XGBoost是一个开源的机器学习库,它实现了优化的分布式梯度增强算法。XGBoost使用并行处理实现快速性能,很好地处理缺失值,在小型数据集上执行良好,并防止过拟合。所有这些优点使XGBoost成为回归问题(例如预测)的一种流行解决方案。预测是各种业务目标的关键任务,例如预测分析、预测维护、产品规划、预算等。许多预测或预测问题都涉及到时间序

升级全面屏!iPhone SE4 提前至 9 月 升级全面屏!iPhone SE4 提前至 9 月 Jul 24, 2024 pm 12:56 PM

最近微博上爆料了关于iPhoneSE4的新消息,消息称iPhoneSE4的后盖工艺和iPhone16标准版完全一样,也就是说,iPhoneSE4会采用玻璃背板,并搭配直屏直边的设计。消息称iPhoneSE4将会提前至今年9月发布,也就是很有可能会和iPhone16同时亮相。1.根据曝光的渲染图可见,iPhoneSE4正面设计与iPhone13相近,刘海屏上设置有前置摄像头和FaceID传感器。背面采用类似iPhoneXr的布局,但仅配置一颗摄像头,并未设有整体摄像模组。

用于时间序列概率预测的分位数回归 用于时间序列概率预测的分位数回归 May 07, 2024 pm 05:04 PM

不要改变原内容的意思,微调内容,重写内容,不要续写。“分位数回归满足这一需求,提供具有量化机会的预测区间。它是一种统计技术,用于模拟预测变量与响应变量之间的关系,特别是当响应变量的条件分布命令人感兴趣时。与传统的回归方法不同,分位数回归侧重于估计响应变量变量的条件量值,而不是条件均值。”图(A):分位数回归分位数回归概念分位数回归是估计⼀组回归变量X与被解释变量Y的分位数之间线性关系的建模⽅法。现有的回归模型实际上是研究被解释变量与解释变量之间关系的一种方法。他们关注解释变量与被解释变量之间的关

手机1英寸传感器到底有多大 其实比相机的1英寸还大 手机1英寸传感器到底有多大 其实比相机的1英寸还大 May 08, 2024 pm 06:40 PM

昨天的文章里没提“传感器尺寸”,没想到大家原来有这么多误解……1英寸到底是多少?因为一些历史遗留问题*,无论是相机还是手机,传感器对角线长度中的“1英寸”都不是25.4mm。*涉及到真空管,这里不做展开,有点类似马屁股决定铁轨宽度。为了避免误读,更严谨的写法是“1.0型”或者“Type1.0”。并且,当传感器尺寸小于1/2型时,1型=18mm;而在传感器尺寸大于等于1/2型时,1型=

时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt 时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt Mar 18, 2024 am 09:20 AM

今天我想分享一个最新的研究工作,这项研究来自康涅狄格大学,提出了一种将时间序列数据与自然语言处理(NLP)大模型在隐空间上对齐的方法,以提高时间序列预测的效果。这一方法的关键在于利用隐空间提示(prompt)来增强时间序列预测的准确性。论文标题:S2IP-LLM:SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting下载地址:https://arxiv.org/pdf/2403.05798v1.pdf1、问题背景大模型

See all articles