我的神经网络(从头开始)训练,让它离目标更远
这是我第一次创建神经网络,我决定在 golang 中创建它,这通常不是用于此目的的语言,但是我想从头开始很好地理解它们如何工作仅基本库。
该程序的目标是训练一个神经网络,使其能够将两个数字(1-10)相加。为此,我创建了一个名为 rawai(我能想到的最好的名字)的神经网络类,并给它一个 1 个输入层(大小为 2 的数组)、1 个隐藏层(大小为 2 的数组)和 1 个输出层(大小为 1) 的数组。
权重有2个2d数组,一个是ih(hidden的输入)[2,2],一个是ho,[2,1]。
下面是启动 ai、训练和测试 ai 的代码。您将看到我使用过的几个调试语句,并且非 golang 或其包的任何其他函数将显示在我的 rawai 类的以下代码中。这是由我的 main 函数调用的:
func additionneuralnetworktest() { nn := newrawai(2, 2, 1, 1/math.pow(10, 15)) fmt.printf("weights ih before: %v\n\nweights ho after: %v\n", nn.weightsih, nn.weightsho) //train neural network // for epoch := 0; epoch < 10000000; epoch++ { for i := 0; i <= 10; i++ { for j := 0; j <= 10; j++ { inputs := make([]float64, 2) targets := make([]float64, 1) inputs[0] = float64(i) inputs[1] = float64(j) targets[0] = float64(i) + float64(j) nn.train(inputs, targets) if epoch%20000 == 0 && i == 5 && j == 5 { fmt.printf("[training] [epoch %d] %f + %f = %f targets[%f]\n", epoch, inputs[0], inputs[1], nn.outputlayer[0], targets[0]) } } } } // test neural network a := rand.intn(10) + 1 b := rand.intn(10) + 1 inputs := make([]float64, 2) inputs[0] = float64(a) inputs[1] = float64(b) prediction := nn.feedforward(inputs)[0] fmt.printf("%d + %d = %f\n", a, b, prediction) fmt.printf("weights ih: %v\n\nweights ho: %v\n", nn.weightsih, nn.weightsho) }
以下是 rawai 文件中的所有代码:
type RawAI struct { InputLayer []float64 `json:"input_layer"` HiddenLayer []float64 `json:"hidden_layer"` OutputLayer []float64 `json:"output_layer"` WeightsIH [][]float64 `json:"weights_ih"` WeightsHO [][]float64 `json:"weights_ho"` LearningRate float64 `json:"learning_rate"` } func NewRawAI(inputSize, hiddenSize, outputSize int, learningRate float64) *RawAI { nn := RawAI{ InputLayer: make([]float64, inputSize), HiddenLayer: make([]float64, hiddenSize), OutputLayer: make([]float64, outputSize), WeightsIH: randomMatrix(inputSize, hiddenSize), WeightsHO: randomMatrix(hiddenSize, outputSize), LearningRate: learningRate, } return &nn } func (nn *RawAI) FeedForward(inputs []float64) []float64 { // Set input layer for i := 0; i < len(inputs); i++ { nn.InputLayer[i] = inputs[i] } // Compute hidden layer for i := 0; i < len(nn.HiddenLayer); i++ { sum := 0.0 for j := 0; j < len(nn.InputLayer); j++ { sum += nn.InputLayer[j] * nn.WeightsIH[j][i] } nn.HiddenLayer[i] = sum if math.IsNaN(sum) { panic(fmt.Sprintf("Sum is NaN on Hidden Layer:\nInput Layer: %v\nHidden Layer: %v\nWeights IH: %v\n", nn.InputLayer, nn.HiddenLayer, nn.WeightsIH)) } } // Compute output layer for k := 0; k < len(nn.OutputLayer); k++ { sum := 0.0 for j := 0; j < len(nn.HiddenLayer); j++ { sum += nn.HiddenLayer[j] * nn.WeightsHO[j][k] } nn.OutputLayer[k] = sum if math.IsNaN(sum) { panic(fmt.Sprintf("Sum is NaN on Output Layer:\n Model: %v\n", nn)) } } return nn.OutputLayer } func (nn *RawAI) Train(inputs []float64, targets []float64) { nn.FeedForward(inputs) // Compute output layer error outputErrors := make([]float64, len(targets)) for k := 0; k < len(targets); k++ { outputErrors[k] = targets[k] - nn.OutputLayer[k] } // Compute hidden layer error hiddenErrors := make([]float64, len(nn.HiddenLayer)) for j := 0; j < len(nn.HiddenLayer); j++ { errorSum := 0.0 for k := 0; k < len(nn.OutputLayer); k++ { errorSum += outputErrors[k] * nn.WeightsHO[j][k] } hiddenErrors[j] = errorSum * sigmoidDerivative(nn.HiddenLayer[j]) if math.IsInf(math.Abs(hiddenErrors[j]), 1) { //Find out why fmt.Printf("Hidden Error is Infinite:\nTargets:%v\nOutputLayer:%v\n\n", targets, nn.OutputLayer) } } // Update weights for j := 0; j < len(nn.HiddenLayer); j++ { for k := 0; k < len(nn.OutputLayer); k++ { delta := nn.LearningRate * outputErrors[k] * nn.HiddenLayer[j] nn.WeightsHO[j][k] += delta } } for i := 0; i < len(nn.InputLayer); i++ { for j := 0; j < len(nn.HiddenLayer); j++ { delta := nn.LearningRate * hiddenErrors[j] * nn.InputLayer[i] nn.WeightsIH[i][j] += delta if math.IsNaN(delta) { fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i])) } if math.IsNaN(nn.WeightsIH[i][j]) { fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i])) } } } } func (nn *RawAI) ExportWeights(filename string) error { weightsJson, err := json.Marshal(nn) if err != nil { return err } err = ioutil.WriteFile(filename, weightsJson, 0644) if err != nil { return err } return nil } func (nn *RawAI) ImportWeights(filename string) error { weightsJson, err := ioutil.ReadFile(filename) if err != nil { return err } err = json.Unmarshal(weightsJson, nn) if err != nil { return err } return nil } //RawAI Tools: func randomMatrix(rows, cols int) [][]float64 { matrix := make([][]float64, rows) for i := 0; i < rows; i++ { matrix[i] = make([]float64, cols) for j := 0; j < cols; j++ { matrix[i][j] = 1.0 } } return matrix } func sigmoid(x float64) float64 { return 1.0 / (1.0 + exp(-x)) } func sigmoidDerivative(x float64) float64 { return x * (1.0 - x) } func exp(x float64) float64 { return 1.0 + x + (x*x)/2.0 + (x*x*x)/6.0 + (x*x*x*x)/24.0 }
输出的例子是这样的: 正如您所看到的,它慢慢地远离目标并继续这样做。 经过询问、谷歌搜索和搜索这个网站后,我找不到我的错误所在,所以我决定问这个问题。
正确答案
我认为您使用的是 均方误差
并在微分后忘记了 -
。
所以改变:
outputerrors[k] = (targets[k] - nn.outputlayer[k])
致:
outputErrors[k] = -(targets[k] - nn.OutputLayer[k])
以上是我的神经网络(从头开始)训练,让它离目标更远的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

OpenSSL,作为广泛应用于安全通信的开源库,提供了加密算法、密钥和证书管理等功能。然而,其历史版本中存在一些已知安全漏洞,其中一些危害极大。本文将重点介绍Debian系统中OpenSSL的常见漏洞及应对措施。DebianOpenSSL已知漏洞:OpenSSL曾出现过多个严重漏洞,例如:心脏出血漏洞(CVE-2014-0160):该漏洞影响OpenSSL1.0.1至1.0.1f以及1.0.2至1.0.2beta版本。攻击者可利用此漏洞未经授权读取服务器上的敏感信息,包括加密密钥等。

Go语言中用于浮点数运算的库介绍在Go语言(也称为Golang)中,进行浮点数的加减乘除运算时,如何确保精度是�...

Go爬虫Colly中的Queue线程问题探讨在使用Go语言的Colly爬虫库时,开发者常常会遇到关于线程和请求队列的问题。�...

本文讨论了GO编程中的GO FMT命令,该命令将代码格式化以遵守官方样式准则。它突出了GO FMT在维持代码一致性,可读性和降低样式辩论方面的重要性。 FO的最佳实践

后端学习路径:从前端转型到后端的探索之旅作为一名从前端开发转型的后端初学者,你已经有了nodejs的基础,...

本文介绍在Debian系统下监控PostgreSQL数据库的多种方法和工具,助您全面掌握数据库性能监控。一、利用PostgreSQL内置监控视图PostgreSQL自身提供多个视图用于监控数据库活动:pg_stat_activity:实时展现数据库活动,包括连接、查询和事务等信息。pg_stat_replication:监控复制状态,尤其适用于流复制集群。pg_stat_database:提供数据库统计信息,例如数据库大小、事务提交/回滚次数等关键指标。二、借助日志分析工具pgBadg
