目录
数据集:
问题 6:
正确答案
文档参考:
函数的简单逻辑。
解决方案:
首页 后端开发 Python教程 如何融化 pandas 数据框?

如何融化 pandas 数据框?

Feb 09, 2024 pm 11:30 PM

如何融化 pandas 数据框?

问题内容

在 pandas 标签上,我经常看到用户询问有关在 pandas 中融化数据帧的问题。我将尝试针对这个主题进行规范的问答(自我回答)。

我要澄清:

  1. 什么是熔化?

  2. 如何使用melt?

  3. 什么时候使用melt?

我看到一些有关融化的热门问题,例如:

  • 使用 pandas 将列转换为行:这个实际上可能很好,但更多的解释会更好。

  • pandas melt function:一个很好的问题,答案也很好,但是有点太模糊了,没有太多解释。

  • 融化 pandas 数据框:也是一个很好的答案!但这只是针对特定情况,这很简单,只有 pd.melt(df)

  • pandas 数据框使用列作为行(融化):非常整洁!但问题是,它仅针对op提出的具体问题,也需要使用pivot_table

所以我将尝试针对这个主题进行规范的问答。

数据集:

我将在这个随机年龄的随机人的随机成绩数据集中找到所有答案(更容易解释答案:d):

import pandas as pd
df = pd.dataframe({'name': ['bob', 'john', 'foo', 'bar', 'alex', 'tom'],
                   'math': ['a+', 'b', 'a', 'f', 'd', 'c'],
                   'english': ['c', 'b', 'b', 'a+', 'f', 'a'],
                   'age': [13, 16, 16, 15, 15, 13]})
登录后复制
>>> df
   name math english  age
0   bob   a+       c   13
1  john    b       b   16
2   foo    a       b   16
3   bar    f      a+   15
4  alex    d       f   15
5   tom    c       a   13
登录后复制

问题:

问题 1:

如何融化数据框以使原始数据框变为以下内容?

    name  age  subject grade
0    bob   13  english     c
1   john   16  english     b
2    foo   16  english     b
3    bar   15  english    a+
4   alex   17  english     f
5    tom   12  english     a
6    bob   13     math    a+
7   john   16     math     b
8    foo   16     math     a
9    bar   15     math     f
10  alex   17     math     d
11   tom   12     math     c
登录后复制
登录后复制

我想对其进行转置,以便一列是每个科目,其他列是学生的重复姓名及其年龄和分数。

问题 2:

这和问题1类似,但是这次我想让问题1输出subject列只有math,我想过滤掉english列:

   name  age subject grades
0   bob   13    math     a+
1  john   16    math      b
2   foo   16    math      a
3   bar   15    math      f
4  alex   15    math      d
5   tom   13    math      c
登录后复制

我希望输出如上所示。

问题 3:

如果我要对熔化进行分组并按学生的分数排序,我该如何做到这一点,以获得如下所示的所需输出:

  value             name                subjects
0     a         foo, tom           math, english
1    a+         bob, bar           math, english
2     b  john, john, foo  math, english, english
3     c         tom, bob           math, english
4     d             alex                    math
5     f        bar, alex           math, english
登录后复制

我需要对其进行排序,名称用逗号分隔,并且 subjects 分别以相同的顺序用逗号分隔。

问题 4:

我如何解冻一个熔化的数据框?假设我已经融化了这个数据框:

df = df.melt(id_vars=['name', 'age'], var_name='subject', value_name='grades')
登录后复制

成为:

    name  age  subject grades
0    bob   13     math     a+
1   john   16     math      b
2    foo   16     math      a
3    bar   15     math      f
4   alex   15     math      d
5    tom   13     math      c
6    bob   13  english      c
7   john   16  english      b
8    foo   16  english      b
9    bar   15  english     a+
10  alex   15  english      f
11   tom   13  english      a
登录后复制

那么我如何将其转换回原始数据框,如下所示?

   name math english  age
0   bob   a+       c   13
1  john    b       b   16
2   foo    a       b   16
3   bar    f      a+   15
4  alex    d       f   15
5   tom    c       a   13
登录后复制

问题 5:

如果我要按学生姓名分组并用逗号分隔科目和成绩,我会怎么做?

   name        subject grades
0  alex  math, english   d, f
1   bar  math, english  f, a+
2   bob  math, english  a+, c
3   foo  math, english   a, b
4  john  math, english   b, b
5   tom  math, english   c, a
登录后复制

我想要一个像上面这样的数据框。

问题 6:

如果我要完全融化我的数据框,所有列都作为值,我会怎么做?

     Column Value
0      Name   Bob
1      Name  John
2      Name   Foo
3      Name   Bar
4      Name  Alex
5      Name   Tom
6      Math    A+
7      Math     B
8      Math     A
9      Math     F
10     Math     D
11     Math     C
12  English     C
13  English     B
14  English     B
15  English    A+
16  English     F
17  English     A
18      Age    13
19      Age    16
20      Age    16
21      Age    15
22      Age    15
23      Age    13
登录后复制

我想要一个像上面这样的数据框。所有列作为值。


正确答案


pandas 版本 < 0.20.0 的注意事项:我将使用 df.melt(...) 作为我的示例,但您需要使用 pd.melt(df, .. .) 代替。

文档参考:

这里的大多数解决方案都将与 melt< 一起使用/a>,所以要知道方法melt< 一起使用/a>,所以要知道方法 ,请参阅

文档说明

熔化逻辑:

    melting合并多列,将dataframe由宽转长,解决问题1(见下文),步骤为:
  1. 首先我们得到了原始数据帧。
  2. mathenglish

    然后,melt 首先合并
  3. 列,并使数据帧复制(更长)。
  4. subject 列,它分别是 grades

    最后它添加了
  5. 列值的主题:

melt

这是

函数的简单逻辑。

解决方案:

问题 1: pd.dataframe.melt问题 1 可以使用

解决

使用以下代码:id_vars 参数传递给 ['name', 'age'],然后自动将 value_vars 设置为其他列(['math', 'english']

print(df.melt(id_vars=['name', 'age'], var_name='subject', value_name='grades'))
登录后复制

此代码将

),这是转置的转换为该格式。 stack您还可以使用

像下面这样:nameage 列设置为索引,并堆叠其余列 mathenglish,并重置索引并指定 grade 作为列名称,然后将其他列重命名为 level_2phpcnendcphp cn 到 <code>subject 然后按subject

print(
    df.set_index(["name", "age"])
    .stack()
    .reset_index(name="grade")
    .rename(columns={"level_2": "subject"})
    .sort_values("subject")
    .reset_index(drop=true)
)
登录后复制

此代码将 nameage 列设置为索引,并堆叠其余列

,并重置索引并指定 grade 作为列名称,然后将其他列重命名为 level_2phpcnendcphp cn 到 <code>subject 然后按subject 列,最后再次重置索引。

🎜这两个解决方案输出:🎜
    name  age  subject grade
0    bob   13  english     c
1   john   16  english     b
2    foo   16  english     b
3    bar   15  english    a+
4   alex   17  english     f
5    tom   12  english     a
6    bob   13     math    a+
7   john   16     math     b
8    foo   16     math     a
9    bar   15     math     f
10  alex   17     math     d
11   tom   12     math     c
登录后复制
登录后复制

问题 2:

这和我的第一个问题类似,但是这个我只在 math 列中进行过滤,这时候 value_vars 参数就可以派上用场了,如下所示:

print(
    df.melt(
        id_vars=["name", "age"],
        value_vars="math",
        var_name="subject",
        value_name="grades",
    )
)
登录后复制

或者我们也可以使用 stack 与列规格:

print(
    df.set_index(["name", "age"])[["math"]]
    .stack()
    .reset_index(name="grade")
    .rename(columns={"level_2": "subject"})
    .sort_values("subject")
    .reset_index(drop=true)
)
登录后复制

这两种解决方案都给出:

   name  age subject grade
0   bob   13    math    a+
1  john   16    math     b
2   foo   16    math     a
3   bar   15    math     f
4  alex   15    math     d
5   tom   13    math     c
登录后复制

问题 3:

问题3可以通过melt解决和 groupby,使用 agg 函数和 ' , '.join,如下所示:

print(
    df.melt(id_vars=["name", "age"])
    .groupby("value", as_index=false)
    .agg(", ".join)
)
登录后复制

它会融合数据框,然后按等级进行分组,聚合它们并用逗号将它们连接起来。

stack也可以用来解决这个问题,与 stackgroupby 如下所示:

print(
    df.set_index(["name", "age"])
    .stack()
    .reset_index()
    .rename(columns={"level_2": "subjects", 0: "grade"})
    .groupby("grade", as_index=false)
    .agg(", ".join)
)
登录后复制

这个 stack 函数只是转置数据帧以相当于 melt 的方式,然后重置索引,重命名列、组和聚合。

两种解决方案输出:

  grade             name                subjects
0     a         foo, tom           math, english
1    a+         bob, bar           math, english
2     b  john, john, foo  math, english, english
3     c         bob, tom           english, math
4     d             alex                    math
5     f        bar, alex           math, english
登录后复制

问题 4:

这可以通过 pivot_table 来解决。我们必须指定参数 valuesindexcolumns 以及 aggfunc

我们可以用下面的代码来解决这个问题:

print(
    df.pivot_table("grades", ["name", "age"], "subject", aggfunc="first")
    .reset_index()
    .rename_axis(columns=none)
)
登录后复制

输出:

   name  age english math
0  alex   15       f    d
1   bar   15      a+    f
2   bob   13       c   a+
3   foo   16       b    a
4  john   16       b    b
5   tom   13       a    c
登录后复制

融化的数据帧被转换回与原始数据帧完全相同的格式。

我们首先旋转融化的数据框,然后重置索引并删除列轴名称。

问题 5:

问题5可以通过melt解决和 groupby 如下所示:

print(
    df.melt(id_vars=["name", "age"], var_name="subject", value_name="grades")
    .groupby("name", as_index=false)
    .agg(", ".join)
)
登录后复制

融化并按 name 分组。

或者您可以stack

print(
    df.set_index(["name", "age"])
    .stack()
    .reset_index()
    .groupby("name", as_index=false)
    .agg(", ".join)
    .rename({"level_2": "subjects", 0: "grades"}, axis=1)
)
登录后复制

两个代码输出:

   name       subjects grades
0  alex  math, english   d, f
1   bar  math, english  f, a+
2   bob  math, english  a+, c
3   foo  math, english   a, b
4  john  math, english   b, b
5   tom  math, english   c, a
登录后复制

问题 6:

问题6可以通过melt解决并且不需要指定列,只需指定预期的列名称:

print(df.melt(var_name='column', value_name='value'))
登录后复制

这会融化整个数据框。

或者您可以stack

print(
    df.stack()
    .reset_index(level=1)
    .sort_values("level_1")
    .reset_index(drop=true)
    .set_axis(["column", "value"], axis=1)
)
登录后复制

两个代码输出:

     Column Value
0       Age    16
1       Age    15
2       Age    15
3       Age    16
4       Age    13
5       Age    13
6   English    A+
7   English     B
8   English     B
9   English     A
10  English     F
11  English     C
12     Math     C
13     Math    A+
14     Math     D
15     Math     B
16     Math     F
17     Math     A
18     Name  Alex
19     Name   Bar
20     Name   Tom
21     Name   Foo
22     Name  John
23     Name   Bob
登录后复制

以上是如何融化 pandas 数据框?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何解决Linux终端中查看Python版本时遇到的权限问题? 如何解决Linux终端中查看Python版本时遇到的权限问题? Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? 在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? Apr 01, 2025 pm 11:15 PM

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? 如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Apr 01, 2025 pm 10:51 PM

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

Python中如何通过字符串动态创建对象并调用其方法? Python中如何通过字符串动态创建对象并调用其方法? Apr 01, 2025 pm 11:18 PM

在Python中,如何通过字符串动态创建对象并调用其方法?这是一个常见的编程需求,尤其在需要根据配置或运行...

哪些流行的Python库及其用途? 哪些流行的Python库及其用途? Mar 21, 2025 pm 06:46 PM

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? 如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

See all articles