时间最优控制示例 GEKKO
我正在尝试在 gekko 中实现时间最优控制问题。特别是,我复制了这个简短的代码片段。 为了实用性也在这里报告:
from gekko import GEKKO import matplotlib.pyplot as plt import numpy as np # set up the gekko model m = GEKKO() # set up the time (minimize the time with time scaling) m.time = np.linspace(0, 1, 100) # set up the variables POSITION = m.Var(value=0, ub=330, lb=0) VELOCITY = m.Var(value=0, ub=33, lb=0) m.fix_final(VELOCITY, 0) m.fix_final(POSITION, 300) # set up the value we modify over the horizon tf = m.FV(value=500, lb=0.1) tf.STATUS = 1 # set up the MV u = m.MV(integer=True, lb=-2, ub=1) u.STATUS = 1 # set up the equations m.Equation(POSITION.dt() / tf == VELOCITY) m.Equation(VELOCITY.dt() / tf == u) # set the objective m.Obj(tf) # set up the options m.options.IMODE = 6 # optimal control m.options.SOLVER = 3 # IPOPT # solve m.solve(disp=False) # print the time print("Total time taken: " + str(tf.NEWVAL)) # plot the results plt.figure() plt.subplot(211) plt.plot(np.linspace(0,1,100)*tf.NEWVAL, POSITION, label='Position') plt.plot(np.linspace(0,1,100)*tf.NEWVAL, VELOCITY, label='Velocity') plt.ylabel('Z') plt.legend() plt.subplot(212) plt.plot(np.linspace(0,1,100)*tf.NEWVAL, u, label=r'$u$') plt.ylabel('u') plt.xlabel('Time') plt.legend() plt.show()
照原样,它工作得很好,但是当我想删除对 velocity 最终值的约束时。
如果我注释 m.fix_final(velocity, 0)
行,结果不会改变。无论如何,它似乎假设最终速度应该为零。此外,如果我将最终速度从零更改为任何其他数字,我会从 gekko 收到错误: exception: @error: solution not found
。
该解决方案应该很容易找到,特别是如果对最终速度没有施加任何约束,则最佳控制将是在整个时间内保持加速()。
任何帮助将不胜感激! :)
正确答案
将最终约束从 m.fix_final(velocity, 0)
和 m.fix_final(position, 300)
更改为:
p = np.zeros(100); p[-1] = 1 last = m.Param(p) m.Equation(last*(POSITION-300)>=0)
这在最后一个节点应用了不等式约束,以便 position>=300
,但它也可以是等式约束。如果不可行的解决方案阻止求解器实现最终条件,我们有时也会使用软约束,例如 m.minimize(last*(position-300)**2)
。相反,它会尝试使解决方案尽可能接近最终约束。当使用 m.fix_final()
固定最终值时,导数也固定为零,因为不再计算该变量。这是 gekko 的已知限制,如此处所述。
以上是时间最优控制示例 GEKKO的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE
