首页 系统教程 操作系统 深入探讨Linux通用的双向循环链表的实现原理和相关技术

深入探讨Linux通用的双向循环链表的实现原理和相关技术

Feb 13, 2024 pm 11:09 PM
linux linux教程 linux系统 linux命令 外壳脚本 嵌入式linux linux入门 linux学习

在嵌入式Linux中,双向循环链表是一种非常重要的数据结构。它们被广泛应用于各种场景,如内核模块、驱动程序、网络协议栈等。在本文中,我们将深入探讨Linux通用的双向循环链表的实现原理和相关技术。

深入探讨Linux通用的双向循环链表的实现原理和相关技术

struct list_head {
    struct list_head *next, *prev;
};
登录后复制

这是链表的元素结构。因为是循环链表,表头和表中节点都是这一结构。有prev和next两个指针,分别指向链表中前一节点和后一节点。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
    struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

在初始化的时候,链表头的prev和next都是指向自身的。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next)
{
    next->prev = new;
    new->next = next;
    new->prev = prev;
    prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next);
#endif

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
    __list_add(new, head, head->next);
}


/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
    __list_add(new, head->prev, head);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

双向循环链表的实现,很少有例外情况,基本都可以用公共的方式来处理。这里无论是加第一个节点,还是其它的节点,使用的方法都一样。
另外,链表API实现时大致都是分为两层:一层外部的,如list_add、list_add_tail,用来消除一些例外情况,调用内部实现;一层是内部的,函数名前会加双下划线,如__list_add,往往是几个操作公共的部分,或者排除例外后的实现。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
    next->prev = prev;
    prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    entry->next = LIST_POISON1;
    entry->prev = LIST_POISON2;
}
#else
extern void list_del(struct list_head *entry);
#endif

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    INIT_LIST_HEAD(entry);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_del是链表中节点的删除。之所以在调用__list_del后又把被删除元素的next、prev指向特殊的LIST_POSITION1和LIST_POSITION2,是为了调试未定义的指针。
list_del_init则是删除节点后,随即把节点中指针再次初始化,这种删除方式更为实用。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
                struct list_head *new)
{
    new->next = old->next;
    new->next->prev = new;
    new->prev = old->prev;
    new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
                    struct list_head *new)
{
    list_replace(old, new);
    INIT_LIST_HEAD(old);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_replace是将链表中一个节点old,替换为另一个节点new。从实现来看,即使old所在地链表只有old一个节点,new也可以成功替换,这就是双向循环链表可怕的通用之处。
list_replace_init将被替换的old随即又初始化。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
    __list_del(list->prev, list->next);
    list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
                  struct list_head *head)
{
    __list_del(list->prev, list->next);
    list_add_tail(list, head);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_move的作用是把list节点从原链表中去除,并加入新的链表head中。
list_move_tail只在加入新链表时与list_move有所不同,list_move是加到head之后的链表头部,而list_move_tail是加到head之前的链表尾部。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
                const struct list_head *head)
{
    return list->next == head;
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_is_last 判断list是否处于head链表的尾部。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
    return head->next == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
    struct list_head *next = head->next;
    return (next == head) && (next == head->prev);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_empty 判断head链表是否为空,为空的意思就是只有一个链表头head。
list_empty_careful 同样是判断head链表是否为空,只是检查更为严格。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
    return !list_empty(head) && (head->next == head->prev);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_is_singular 判断head中是否只有一个节点,即除链表头head外只有一个节点。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
static inline void __list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    struct list_head *new_first = entry->next;
    list->next = head->next;
    list->next->prev = list;
    list->prev = entry;
    entry->next = list;
    head->next = new_first;
    new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *    and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    if (list_empty(head))
        return;
    if (list_is_singular(head) &&
        (head->next != entry && head != entry))
        return;
    if (entry == head)
        INIT_LIST_HEAD(list);
    else
        __list_cut_position(list, head, entry);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_cut_position 用于把head链表分为两个部分。从head->next一直到entry被从head链表中删除,加入新的链表list。新链表list应该是空的,或者原来的节点都可以被忽略掉。可以看到,list_cut_position中排除了一些意外情况,保证调用__list_cut_position时至少有一个元素会被加入新链表。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
static inline void __list_splice(const struct list_head *list,
                 struct list_head *prev,
                 struct list_head *next)
{
    struct list_head *first = list->next;
    struct list_head *last = list->prev;

    first->prev = prev;
    prev->next = first;

    last->next = next;
    next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head->prev, head);
}
登录后复制
深入探讨Linux通用的双向循环链表的实现原理和相关技术

list_splice的功能和list_cut_position正相反,它合并两个链表。list_splice把list链表中的节点加入head链表中。在实际操作之前,要先判断list链表是否为空。它保证调用__list_splice时list链表中至少有一个节点可以被合并到head链表中。
list_splice_tail只是在合并链表时插入的位置不同。list_splice是把原来list链表中的节点全加到head链表的头部,而list_splice_tail则是把原来list链表中的节点全加到head链表的尾部。

深入探讨Linux通用的双向循环链表的实现原理和相关技术
/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
                    struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head, head->next);
        INIT_LIST_HEAD(list);
    }
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
                     struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head->prev, head);
        INIT_LIST_HEAD(list);
    }
}
登录后复制

list_splice_init 除了完成list_splice的功能,还把变空了的list链表头重新初始化。
list_splice_tail_init 除了完成list_splice_tail的功能,还吧变空了得list链表头重新初始化。
list操作的API大致如以上所列,包括链表节点添加与删除、节点从一个链表转移到另一个链表、链表中一个节点被替换为另一个节点、链表的合并与拆分、查看链表当前是否为空或者只有一个节点。
接下来,是操作链表遍历时的一些宏,我们也简单介绍一下。

/**
 * list_entry - get the struct for this entry
 * @ptr:    the &struct list_head pointer.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
    container_of(ptr, type, member)
登录后复制

list_entry主要用于从list节点查找其内嵌在的结构。比如定义一个结构struct A{ struct list_head list; }; 如果知道结构中链表的地址ptrList,就可以从ptrList进而获取整个结构的地址(即整个结构的指针) struct A *ptrA = list_entry(ptrList, struct A, list);
这种地址翻译的技巧是linux的拿手好戏,container_of随处可见,只是链表节点多被封装在更复杂的结构中,使用专门的list_entry定义也是为了使用方便

/**
 * list_first_entry - get the first element from a list
 * @ptr:    the list head to take the element from.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_struct within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
    list_entry((ptr)->next, type, member)
登录后复制

list_first_entry是将ptr看完一个链表的链表头,取出其中第一个节点对应的结构地址。使用list_first_entry是应保证链表中至少有一个节点。

/**
 * list_for_each    -    iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 */
#define list_for_each(pos, head) \
    for (pos = (head)->next; prefetch(pos->next), pos != (head); \
            pos = pos->next)
登录后复制

list_for_each循环遍历链表中的每个节点,从链表头部的第一个节点,一直到链表尾部。中间的prefetch是为了利用平台特性加速链表遍历,在某些平台下定义为空,可以忽略。

/**
 * __list_for_each    -    iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 *
 * This variant differs from list_for_each() in that it's the
 * simplest possible list iteration code, no prefetching is done.
 * Use this for code that knows the list to be very short (empty
 * or 1 entry) most of the time.
 */
#define __list_for_each(pos, head) \
    for (pos = (head)->next; pos != (head); pos = pos->next)
登录后复制

__list_for_each与list_for_each没什么不同,只是少了prefetch的内容,实现上更为简单易懂。

/**
 * list_for_each_prev    -    iterate over a list backwards
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 */
#define list_for_each_prev(pos, head) \
    for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
            pos = pos->prev)
登录后复制

list_for_each_prev与list_for_each的遍历顺序相反,从链表尾逆向遍历到链表头。

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:        another &struct list_head to use as temporary storage
 * @head:    the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
    for (pos = (head)->next, n = pos->next; pos != (head); \
        pos = n, n = pos->next)
登录后复制

list_for_each_safe 也是链表顺序遍历,只是更加安全。即使在遍历过程中,当前节点从链表中删除,也不会影响链表的遍历。参数上需要加一个暂存的链表节点指针n。

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:        another &struct list_head to use as temporary storage
 * @head:    the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
    for (pos = (head)->prev, n = pos->prev; \
         prefetch(pos->prev), pos != (head); \
         pos = n, n = pos->prev)
登录后复制

list_for_each_prev_safe 与list_for_each_prev同样是链表逆序遍历,只是加了链表节点删除保护。

/**
 * list_for_each_entry    -    iterate over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)                \
    for (pos = list_entry((head)->next, typeof(*pos), member);    \
         prefetch(pos->member.next), &pos->member != (head);     \
         pos = list_entry(pos->member.next, typeof(*pos), member))
登录后复制

list_for_each_entry不是遍历链表节点,而是遍历链表节点所嵌套进的结构。这个实现上较为复杂,但可以等价于list_for_each加上list_entry的组合。

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)            \
    for (pos = list_entry((head)->prev, typeof(*pos), member);    \
         prefetch(pos->member.prev), &pos->member != (head);     \
         pos = list_entry(pos->member.prev, typeof(*pos), member))
登录后复制

list_for_each_entry_reverse 是逆序遍历链表节点所嵌套进的结构,等价于list_for_each_prev加上list_etnry的组合。

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member)         \
    for (pos = list_entry(pos->member.next, typeof(*pos), member);    \
         prefetch(pos->member.next), &pos->member != (head);    \
         pos = list_entry(pos->member.next, typeof(*pos), member))
登录后复制

list_for_each_entry_continue也是遍历链表上的节点嵌套的结构。只是并非从链表头开始,而是从结构指针的下一个结构开始,一直到链表尾部。

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member)        \
    for (pos = list_entry(pos->member.prev, typeof(*pos), member);    \
         prefetch(pos->member.prev), &pos->member != (head);    \
         pos = list_entry(pos->member.prev, typeof(*pos), member))
登录后复制

list_for_each_entry_continue_reverse 是逆序遍历链表上的节点嵌套的结构。只是并非从链表尾开始,而是从结构指针的前一个结构开始,一直到链表头部。

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member)             \
    for (; prefetch(pos->member.next), &pos->member != (head);    \
         pos = list_entry(pos->member.next, typeof(*pos), member))
登录后复制

list_for_each_entry_from 是从当前结构指针pos开始,顺序遍历链表上的结构指针。

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)            \
    for (pos = list_entry((head)->next, typeof(*pos), member),    \
        n = list_entry(pos->member.next, typeof(*pos), member);    \
         &pos->member != (head);                     \
         pos = n, n = list_entry(n->member.next, typeof(*n), member))
登录后复制

list_for_each_entry_safe 也是顺序遍历链表上节点嵌套的结构。只是加了删除节点的保护。

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member)         \
    for (pos = list_entry(pos->member.next, typeof(*pos), member),         \
        n = list_entry(pos->member.next, typeof(*pos), member);        \
         &pos->member != (head);                        \
         pos = n, n = list_entry(n->member.next, typeof(*n), member))
登录后复制

list_for_each_entry_safe_continue 是从pos的下一个结构指针开始,顺序遍历链表上的结构指针,同时加了节点删除保护。

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member)             \
    for (n = list_entry(pos->member.next, typeof(*pos), member);        \
         &pos->member != (head);                        \
         pos = n, n = list_entry(n->member.next, typeof(*n), member))
登录后复制

list_for_each_entry_safe_from 是从pos开始,顺序遍历链表上的结构指针,同时加了节点删除保护。

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_struct within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member)        \
    for (pos = list_entry((head)->prev, typeof(*pos), member),    \
        n = list_entry(pos->member.prev, typeof(*pos), member);    \
         &pos->member != (head);                     \
         pos = n, n = list_entry(n->member.prev, typeof(*n), member))
登录后复制

list_for_each_entry_safe_reverse 是从pos的前一个结构指针开始,逆序遍历链表上的结构指针,同时加了节点删除保护。
至此为止,我们介绍了linux中双向循环链表的结构、所有的操作函数和遍历宏定义。相信以后在linux代码中遇到链表的使用,不会再陌生。

总之,双向循环链表是嵌入式Linux中不可或缺的一部分。它们被广泛应用于各种场景,如内核模块、驱动程序、网络协议栈等。希望本文能够帮助读者更好地理解Linux通用的双向循环链表的实现原理和相关技术。

以上是深入探讨Linux通用的双向循环链表的实现原理和相关技术的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

deepseek网页版入口 deepseek官网入口 deepseek网页版入口 deepseek官网入口 Feb 19, 2025 pm 04:54 PM

DeepSeek 是一款强大的智能搜索与分析工具,提供网页版和官网两种访问方式。网页版便捷高效,免安装即可使用;官网则提供全面产品信息、下载资源和支持服务。无论个人还是企业用户,都可以通过 DeepSeek 轻松获取和分析海量数据,提升工作效率、辅助决策和促进创新。

deepseek怎么安装 deepseek怎么安装 Feb 19, 2025 pm 05:48 PM

DeepSeek的安装方法有多种,包括:从源码编译(适用于经验丰富的开发者)使用预编译包(适用于Windows用户)使用Docker容器(最便捷,无需担心兼容性)无论选择哪种方法,请仔细阅读官方文档并充分准备,避免不必要的麻烦。

BITGet官方网站安装(2025新手指南) BITGet官方网站安装(2025新手指南) Feb 21, 2025 pm 08:42 PM

BITGet 是一款加密货币交易所,提供各种交易服务,包括现货交易、合约交易和衍生品。该交易所成立于 2018 年,总部位于新加坡,致力于为用户提供安全可靠的交易平台。BITGet 提供多种交易对,包括 BTC/USDT、ETH/USDT 和 XRP/USDT。此外,该交易所还在安全性和流动性方面享有盛誉,并提供多种功能,如高级订单类型、杠杆交易和 24/7 全天候客户支持。

欧易okx安装包直接进 欧易okx安装包直接进 Feb 21, 2025 pm 08:00 PM

欧易 OKX,全球领先的数字资产交易所,现推出官方安装包,提供安全便捷的交易体验。欧易 OKX 安装包无需通过浏览器访问,可直接在设备上安装独立应用程序,为用户打造稳定高效的交易平台。安装过程简便易懂,用户只需下载最新版本安装包,按照提示一步步操作即可完成安装。

gate.io安装包免费拿 gate.io安装包免费拿 Feb 21, 2025 pm 08:21 PM

Gate.io是一款受欢迎的加密货币交易所,用户可通过下载其安装包并安装在设备上使用。获取安装包步骤如下:访问Gate.io官方网站,点击“下载”,选择对应操作系统(Windows、Mac或Linux),将安装包下载至计算机。安装过程中建议暂时禁用杀毒软件或防火墙,确保安装顺利。完成后,用户需创建Gate.io账户以开始使用。

欧易交易所下载官方入口 欧易交易所下载官方入口 Feb 21, 2025 pm 07:51 PM

欧易,又称OKX,是一个全球领先的加密货币交易平台。文章提供了欧易官方安装包的下载入口,方便用户在不同设备上安装欧易客户端。该安装包支持 Windows、Mac、Android 和 iOS 系统,用户可根据自己的设备类型选择相应版本下载。安装完成后,用户即可注册或登录欧易账户,开始交易加密货币和享受平台提供的其他服务。

gate.io官网注册安装包链接 gate.io官网注册安装包链接 Feb 21, 2025 pm 08:15 PM

Gate.io 是一款备受赞誉的加密货币交易平台,以其广泛的代币选择、低廉的交易费用和用户友好的界面而闻名。凭借其先进的安全功能和优秀的客户服务,Gate.io 为交易者提供一个可靠且便利的加密货币交易环境。想要加入 Gate.io 的行列,欢迎点击提供的链接下载官方注册安装包,开启您的加密货币交易之旅。

如何在Ubuntu上使用nginx安装phpmyadmin? 如何在Ubuntu上使用nginx安装phpmyadmin? Feb 07, 2025 am 11:12 AM

该教程指导您在Ubuntu系统上安装和配置Nginx和PhpMyAdmin,并可能与现有的Apache服务器一起安装和配置。 我们将介绍设置NGINX,解决与Apache的潜在端口冲突,安装Mariadb(

See all articles