目录
1. 前言" >1. 前言
2. sysfs和Kobject的关系" >2. sysfs和Kobject的关系
3. attribute" >3. attribute
3.1 attribute的功能概述" >3.1 attribute的功能概述
3.2 attibute文件的创建" >3.2 attibute文件的创建
3.3 attibute文件的read和write" >3.3 attibute文件的read和write
4. sysfs在设备模型中的应用总结" >4. sysfs在设备模型中的应用总结
首页 系统教程 操作系统 详解Linux设备模型(4)_sysfs

详解Linux设备模型(4)_sysfs

Feb 15, 2024 pm 05:00 PM
linux linux教程 linux系统 linux命令 外壳脚本 overflow 嵌入式linux linux入门 linux学习

1. 前言

sysfs是一种基于RAM的文件系统,它与Kobject结合使用,能够将Kernel的数据结构以及属性导出到用户空间,以文件目录结构的形式提供对这些数据结构的访问支持。

详解Linux设备模型(4)_sysfs

sysfs拥有文件系统的所有属性,但本文主要关注其在Linux设备模型中的特性。因此,不会涉及过多的文件系统实现细节,而只介绍sysfs在设备模型中的作用和使用方法。具体包括:

  • sysfs与Kobject的关系
  • 属性(attribute)的概念
  • sysfs的文件系统操作接口

2. sysfs和Kobject的关系

在”Linux设备模型_Kobject”文章中,有提到过,每一个Kobject,都会对应sysfs中的一个目录。因此在将Kobject添加到Kernel时,create_dir接口会调用sysfs文件系统的创建目录接口,创建和Kobject对应的目录,相关的代码如下:

 1: /* lib/kobject.c, line 47 */
 2: static int create_dir(struct kobject *kobj)
 3: {
 4:     int error = 0;
 5:     error = sysfs_create_dir(kobj);
 6:     if (!error) {
 7:         error = populate_dir(kobj);
 8:     if (error)
 9:         sysfs_remove_dir(kobj);
 10:     }   
 11:     return error;
 12: }
 13:  
 14: /* fs/sysfs/dir.c, line 736 */
 15: **
 16: *  sysfs_create_dir - create a directory for an object.
 17: *  @kobj:      object we're creating directory for. 
 18: */
 19: int sysfs_create_dir(struct kobject * kobj)
 20: {
 21:     enum kobj_ns_type type;
 22:     struct sysfs_dirent *parent_sd, *sd;
 23:     const void *ns = NULL;
 24:     int error = 0;
 25:     ...
 26: }
登录后复制

3. attribute

3.1 attribute的功能概述

在sysfs中,为什么会有attribute的概念呢?其实它是对应kobject而言的,指的是kobject的“属性”。我们知道,

sysfs中的目录描述了kobject,而kobject是特定数据类型变量(如struct device)的体现。因此kobject的属性,就是这些变量的属性。它可以是任何东西,名称、一个内部变量、一个字符串等等。而attribute,在sysfs文件系统中是以文件的形式提供的,即:kobject的所有属性,都在它对应的sysfs目录下以文件的形式呈现。这些文件一般是可读、写的,而kernel中定义了这些属性的模块,会根据用户空间的读写操作,记录和返回这些attribute的值。

总结一下:所谓的attibute,就是内核空间和用户空间进行信息交互的一种方法。例如某个driver定义了一个变量,却希望用户空间程序可以修改该变量,以控制driver的运行行为,那么就可以将该变量以sysfs attribute的形式开放出来。

Linux内核中,attribute分为普通的attribute和二进制attribute,如下:

 1: /* include/linux/sysfs.h, line 26 */
 2: struct attribute {
 3:     const char *name;
 4:     umode_t         mode;
 5: #ifdef CONFIG_DEBUG_LOCK_ALLOC
 6:     bool ignore_lockdep:1;
 7:     struct lock_class_key   *key;
 8:     struct lock_class_key   skey;
 9: #endif
 10: };
 11:  
 12: /* include/linux/sysfs.h, line 100 */
 13: struct bin_attribute {
 14:     struct attribute    attr;
 15:     size_t          size;
 16:     void *private;
 17:     ssize_t (*read)(struct file *, struct kobject *, struct bin_attribute *,
 18:                     char *, loff_t, size_t);
 19:     ssize_t (*write)(struct file *,struct kobject *, struct bin_attribute *,
 20:                     char *, loff_t, size_t);
 21:     int (*mmap)(struct file *, struct kobject *, struct bin_attribute *attr,
 22:                     struct vm_area_struct *vma);
 23: };
登录后复制

struct attribute为普通的attribute,使用该attribute生成的sysfs文件,只能用字符串的形式读写(后面会说为什么)。而struct bin_attribute在struct attribute的基础上,增加了read、write等函数,因此它所生成的sysfs文件可以用任何方式读写。

说完基本概念,我们要问两个问题:

Kernel怎么把attribute变成sysfs中的文件呢?

用户空间对sysfs的文件进行的读写操作,怎么传递给Kernel呢?

下面来看看这个过程。

3.2 attibute文件的创建

在linux内核中,attibute文件的创建是由fs/sysfs/file.c中sysfs_create_file接口完成的,该接口的实现没有什么特殊之处,大多是文件系统相关的操作,和设备模型没有太多的关系,这里先略过不提。

3.3 attibute文件的read和write

看到3.1章节struct attribute的原型时,也许我们会犯嘀咕,该结构很简单啊,name表示文件名称,mode表示文件模式,其它的字段都是内核用于debug Kernel Lock的,那文件操作的接口在哪里呢?

不着急,我们去fs/sysfs目录下看看sysfs相关的代码逻辑。

所有的文件系统,都会定义一个struct file_operations变量,用于描述本文件系统的操作接口,sysfs也不例外:

 1: /* fs/sysfs/file.c, line 472 */
 2: const struct file_operations sysfs_file_operations = {
 3:     .read       = sysfs_read_file,
 4:     .write      = sysfs_write_file,
 5:     .llseek     = generic_file_llseek,
 6:     .open       = sysfs_open_file,
 7:     .release    = sysfs_release,
 8:     .poll       = sysfs_poll,
 9: };
登录后复制

attribute文件的read操作,会由VFS转到sysfs_file_operations的read(也就是sysfs_read_file)接口上,让我们大概看一下该接口的处理逻辑。

 1: /* fs/sysfs/file.c, line 127 */
 2: static ssize_t
 3: sysfs_read_file(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 4: {
 5:     struct sysfs_buffer * buffer = file->private_data;
 6:     ssize_t retval = 0;
 7:  
 8:     mutex_lock(&buffer->mutex);
 9:     if (buffer->needs_read_fill || *ppos == 0) {
 10:        retval = fill_read_buffer(file->f_path.dentry,buffer);
 11:        if (retval)
 12:            goto out;
 13:    }
 14: ...
 15: }
 16: /* fs/sysfs/file.c, line 67 */
 17: static int fill_read_buffer(struct dentry * dentry, struct sysfs_buffer * buffer)
 18: {           
 19:    struct sysfs_dirent *attr_sd = dentry->d_fsdata;
 20:    struct kobject *kobj = attr_sd->s_parent->s_dir.kobj;
 21:    const struct sysfs_ops * ops = buffer->ops;
 22:    ...        
 23:    count = ops->show(kobj, attr_sd->s_attr.attr, buffer->page);
 24:    ...
 25: }
登录后复制

read处理看着很简单,sysfs_read_file从file指针中取一个私有指针(注:大家可以稍微留一下心,私有数据的概念,在VFS中使用是非常普遍的),转换为一个struct sysfs_buffer类型的指针,以此为参数(buffer),转身就调用fill_read_buffer接口。

而fill_read_buffer接口,直接从buffer指针中取出一个struct sysfs_ops指针,调用该指针的show函数,即完成了文件的read操作。

那么后续呢?当然是由ops->show接口接着处理咯。而具体怎么处理,就是其它模块(例如某个driver)的事了,sysfs不再关心(其实,Linux大多的核心代码,都是只提供架构和机制,具体的实现,也就是苦力,留给那些码农吧!这就是设计的魅力)。

不过还没完,这个struct sysfs_ops指针哪来的?好吧,我们再看看open(sysfs_open_file)接口吧。

 1: /* fs/sysfs/file.c, line 326 */
 2: static int sysfs_open_file(struct inode *inode, struct file *file)
 3: {
 4:     struct sysfs_dirent *attr_sd = file->f_path.dentry->d_fsdata;
 5:     struct kobject *kobj = attr_sd->s_parent->s_dir.kobj;
 6:     struct sysfs_buffer *buffer;
 7:     const struct sysfs_ops *ops;
 8:     int error = -EACCES;
 9:  
 10:    /* need attr_sd for attr and ops, its parent for kobj */
 11:    if (!sysfs_get_active(attr_sd))
 12:    return -ENODEV;
 13:  
 14:    /* every kobject with an attribute needs a ktype assigned */
 15:    if (kobj->ktype && kobj->ktype->sysfs_ops)
 16:        ops = kobj->ktype->sysfs_ops;
 17:    else {
 18:        WARN(1, KERN_ERR "missing sysfs attribute operations for "
 19:            "kobject: %s\n", kobject_name(kobj));
 20:        goto err_out;
 21:    }
 22:  
 23:    ...
 24:  
 25:    buffer = kzalloc(sizeof(struct sysfs_buffer), GFP_KERNEL);
 26:    if (!buffer)
 27:        goto err_out;
 28:  
 29:    mutex_init(&buffer->mutex);
 30:    buffer->needs_read_fill = 1;
 31:    buffer->ops = ops;
 32:    file->private_data = buffer;
 33:    ...
 34: }
登录后复制

哦,原来和ktype有关系。这个指针是从该attribute所从属的kobject中拿的。再去看一下”Linux设备模型_Kobject”中ktype的定义,还真有一个struct sysfs_ops的指针。

我们注意一下14行的注释以及其后代码逻辑,如果从属的kobject(就是attribute文件所在的目录)没有ktype,或者没有ktype->sysfs_ops指针,是不允许它注册任何attribute的!

经过确认后,sysfs_open_file从ktype中取出struct sysfs_ops指针,并在随后的代码逻辑中,分配一个struct sysfs_buffer类型的指针(buffer),并把struct sysfs_ops指针保存在其中,随后(注意哦),把buffer指针交给file的private_data,随后read/write等接口便可以取出使用。嗯!惯用伎俩!

顺便看一下struct sysfs_ops吧,我想你已经能够猜到了。

 1: /* include/linux/sysfs.h, line 124 */
 2: struct sysfs_ops {
 3:     ssize_t (*show)(struct kobject *, struct attribute *,char *);
 4:     ssize_t (*store)(struct kobject *,struct attribute *,const char *, size_t);
 5:     const void *(*namespace)(struct kobject *, const struct attribute *);
 6: };
登录后复制

attribute文件的write过程和read类似,这里就不再多说。另外,上面只分析了普通attribute的逻辑,而二进制类型的呢?也类似,去看看fs/sysfs/bin.c吧,这里也不说了。

讲到这里,应该已经结束了,事实却不是如此。上面read/write的数据流,只到kobject(也就是目录)级别哦,而真正需要操作的是attribute(文件)啊!这中间一定还有一层转换!确实,不过又交给其它模块了。 下面我们通过一个例子,来说明如何转换的。

4. sysfs在设备模型中的应用总结

让我们通过设备模型class.c中有关sysfs的实现,来总结一下sysfs的应用方式。

首先,在class.c中,定义了Class所需的ktype以及sysfs_ops类型的变量,如下:

 1: /* drivers/base/class.c, line 86 */
 2: static const struct sysfs_ops class_sysfs_ops = {
 3:     .show      = class_attr_show,
 4:     .store     = class_attr_store,
 5:     .namespace = class_attr_namespace,
 6: };  
 7: 
 8: static struct kobj_type class_ktype = {
 9:     .sysfs_ops  = &class_sysfs_ops,
 10:    .release    = class_release,
 11:    .child_ns_type  = class_child_ns_type,
 12: };
登录后复制

由前面章节的描述可知,所有class_type的Kobject下面的attribute文件的读写操作,都会交给class_attr_show和class_attr_store两个接口处理。以class_attr_show为例:

 1: /* drivers/base/class.c, line 24 */
 2: #define to_class_attr(_attr) container_of(_attr, struct class_attribute, attr)
 3:  
 4: static ssize_t class_attr_show(struct kobject *kobj, struct attribute *attr,
 5: char *buf)
 6: {   
 7:     struct class_attribute *class_attr = to_class_attr(attr);
 8:     struct subsys_private *cp = to_subsys_private(kobj);
 9:     ssize_t ret = -EIO;
 10:  
 11:    if (class_attr->show)
 12:    ret = class_attr->show(cp->class, class_attr, buf);
 13:    return ret;
 14: }
登录后复制

该接口使用container_of从struct attribute类型的指针中取得一个class模块的自定义指针:struct class_attribute,该指针中包含了class模块自身的show和store接口。下面是struct class_attribute的声明:

 1: /* include/linux/device.h, line 399 */
 2: struct class_attribute {
 3:     struct attribute attr;
 4:     ssize_t (*show)(struct class *class, struct class_attribute *attr,
 5:                     char *buf);
 6:     ssize_t (*store)(struct class *class, struct class_attribute *attr,
 7:                     const char *buf, size_t count);
 8:     const void *(*namespace)(struct class *class,
 9:                                 const struct class_attribute *attr); 
 10: };
登录后复制

因此,所有需要使用attribute的模块,都不会直接定义struct attribute变量,而是通过一个自定义的数据结构,该数据结构的一个成员是struct attribute类型的变量,并提供show和store回调函数。然后在该模块ktype所对应的struct sysfs_ops变量中,实现该本模块整体的show和store函数,并在被调用时,转接到自定义数据结构(struct class_attribute)

以上是详解Linux设备模型(4)_sysfs的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

deepseek网页版入口 deepseek官网入口 deepseek网页版入口 deepseek官网入口 Feb 19, 2025 pm 04:54 PM

DeepSeek 是一款强大的智能搜索与分析工具,提供网页版和官网两种访问方式。网页版便捷高效,免安装即可使用;官网则提供全面产品信息、下载资源和支持服务。无论个人还是企业用户,都可以通过 DeepSeek 轻松获取和分析海量数据,提升工作效率、辅助决策和促进创新。

deepseek怎么安装 deepseek怎么安装 Feb 19, 2025 pm 05:48 PM

DeepSeek的安装方法有多种,包括:从源码编译(适用于经验丰富的开发者)使用预编译包(适用于Windows用户)使用Docker容器(最便捷,无需担心兼容性)无论选择哪种方法,请仔细阅读官方文档并充分准备,避免不必要的麻烦。

如何解决Linux终端中查看Python版本时遇到的权限问题? 如何解决Linux终端中查看Python版本时遇到的权限问题? Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

BITGet官方网站安装(2025新手指南) BITGet官方网站安装(2025新手指南) Feb 21, 2025 pm 08:42 PM

BITGet 是一款加密货币交易所,提供各种交易服务,包括现货交易、合约交易和衍生品。该交易所成立于 2018 年,总部位于新加坡,致力于为用户提供安全可靠的交易平台。BITGet 提供多种交易对,包括 BTC/USDT、ETH/USDT 和 XRP/USDT。此外,该交易所还在安全性和流动性方面享有盛誉,并提供多种功能,如高级订单类型、杠杆交易和 24/7 全天候客户支持。

gate.io安装包免费拿 gate.io安装包免费拿 Feb 21, 2025 pm 08:21 PM

Gate.io是一款受欢迎的加密货币交易所,用户可通过下载其安装包并安装在设备上使用。获取安装包步骤如下:访问Gate.io官方网站,点击“下载”,选择对应操作系统(Windows、Mac或Linux),将安装包下载至计算机。安装过程中建议暂时禁用杀毒软件或防火墙,确保安装顺利。完成后,用户需创建Gate.io账户以开始使用。

欧易okx安装包直接进 欧易okx安装包直接进 Feb 21, 2025 pm 08:00 PM

欧易 OKX,全球领先的数字资产交易所,现推出官方安装包,提供安全便捷的交易体验。欧易 OKX 安装包无需通过浏览器访问,可直接在设备上安装独立应用程序,为用户打造稳定高效的交易平台。安装过程简便易懂,用户只需下载最新版本安装包,按照提示一步步操作即可完成安装。

如何在系统重启后自动设置unixsocket的权限? 如何在系统重启后自动设置unixsocket的权限? Mar 31, 2025 pm 11:54 PM

如何在系统重启后自动设置unixsocket的权限每次系统重启后,我们都需要执行以下命令来修改unixsocket的权限:sudo...

欧易交易所下载官方入口 欧易交易所下载官方入口 Feb 21, 2025 pm 07:51 PM

欧易,又称OKX,是一个全球领先的加密货币交易平台。文章提供了欧易官方安装包的下载入口,方便用户在不同设备上安装欧易客户端。该安装包支持 Windows、Mac、Android 和 iOS 系统,用户可根据自己的设备类型选择相应版本下载。安装完成后,用户即可注册或登录欧易账户,开始交易加密货币和享受平台提供的其他服务。

See all articles