文生图新SOTA!Pika北大斯坦福联合推出RPG,多模态助力解决文生图两大难题
近日,北大、斯坦福、以及爆火的Pika Labs联合发表了一项研究,将大模型文生图的能力提升到了新的高度。
论文地址:https://arxiv.org/pdf/2401.11708.pdf
代码地址:https://github.com/YangLing0818/RPG-DiffusionMaster
论文作者提出了一个创新的方法,利用多模态大语言模型(MLLM)的推理能力,来改进文本到图像生成/编辑的框架。
换言之,该方法旨在提升文生成模型在处理包含多个属性、关系和对象的复杂文本提示时的性能表现。
话不多说,直接上图:
A green twintail girl in orange dress is sitting on the sofa while a messy desk under a big window on the left, a lively aquarium is on the top right of the sofa, realistic style.
一个穿着橙色连衣裙的双马尾女孩坐在沙发上,大窗户旁是凌乱的办公桌,右上方摆放着一个活泼的水族馆,房间风格现实主义。
面对关系复杂的多个对象,模型给出的整个画面的结构、人与物品的关系都非常合理,使观者眼前一亮。
而对于同样的提示,我们来看一下当前最先进的SDXL和DALL·E 3的表现:
再看一下新框架面对多个对象绑定多个属性时的表现:
From left to right, a blonde ponytail Europe girl in white shirt, a brown curly hair African girl in blue shirt printed with a bird, an Asian young man with black short hair in suit are walking in the campus happily.
从左到右,一个穿着白色衬衫、扎着金发马尾辫的欧洲女孩,一个穿着印着小鸟的蓝色衬衫、棕色卷发的非洲女孩,一个穿着西装、黑色短发的亚洲年轻人正开心地在校园里散步。
研究人员将这个框架命名为RPG(Recaption,Plan and Generate),采用MLLM作为全局规划器,将复杂图像的生成过程分解为子区域内多个更简单的生成任务。
文中提出了互补的区域扩散,实现区域组合生成,还将文本引导的图像生成和编辑以闭环方式集成到了RPG框架中,从而增强了泛化能力。
实验表明,本文提出的RPG框架优于目前最先进的文本图像扩散模型,包括DALL·E 3和SDXL,尤其是在多类别对象合成以及文本图像语义对齐方面。
值得注意的是,RPG框架可以广泛兼容各种MLLM架构(如MiniGPT-4)和扩散骨干网络(如ControlNet)。
RPG
当前的文生图模型主要存在两个问题:1. 基于布局或基于注意力的方法只能提供粗略的空间引导,并且难以处理重叠的对象;2. 基于反馈的方法需要收集高质量的反馈数据,并产生额外的训练成本。
为了解决这些问题,研究人员提出了RPG的三个核心策略,如下图所示:
给定一个包含多个实体和关系的复杂文本提示,首先利用MLLM将其分解为基本提示和高度描述性的子提示;随后,利用多模态模型的CoT规划将图像空间划分为互补的子区域;最后,引入互补区域扩散来独立生成每个子区域的图像,并在每个采样步骤中进行聚合。
多模态重新调整
将文本提示转换为高度描述性的提示,提供信息增强的提示理解和扩散模型中的语义对齐。
使用MLLM来识别用户提示y中的关键短语,获得其中的子项:
使用LLM将文本提示符分解为不同的子提示符,并进行更详细的重新描述:
通过这种方式,可以为每个子提示生成更密集的细粒度细节,以有效地提高生成图像的保真度,并减少提示和图像之间的语义差异。
思想链规划
将图像空间划分为互补的子区域,并为每个子区域分配不同的子提示,同时将生成任务分解为多个更简单的子任务。
具体来说,将图像空间H×W划分为若干互补区域,并将每个增强子提示符分配给特定区域R:
利用MLLM强大的思维链推理能力,进行有效的区域划分。通过分析重新获得的中间结果,就能为后续的图像合成生成详细的原理和精确的说明。
补充区域扩散
在每个矩形子区域内,独立生成由子提示引导的内容,随后调整大小和连接的方式,在空间上合并这些子区域。
这种方法有效地解决了大模型难以处理重叠对象的问题。此外,论文扩展了这个框架,以适应编辑任务,采用基于轮廓的区域扩散,从而对需要修改的不一致区域精确操作。
文本引导的图像编辑
如上图所示。在复述阶段,RPG采用MLLM作为字幕来复述源图像,并利用其强大的推理能力来识别图像和目标提示之间的细粒度语义差异,直接分析输入图像如何与目标提示对齐。
使用MLLM(GPT-4、Gemini Pro等)来检查输入与目标之间关于数值准确性、属性绑定和对象关系的差异。由此产生的多模态理解反馈将被交付给MLLM,用于推理编辑计划。
我们来看一下生成效果在以上三个方面的表现,首先是属性绑定,对比SDXL、DALL·E 3和LMD+:
我们可以看到在全部三项测试中,只有RPG最准确地反映了提示所描述的内容。
然后是数值准确性,展示顺序同上(SDXL、DALL·E 3、LMD+、RPG):
——没想到数数这件事情对于文生图大模型还挺难的,RPG轻松战胜对手。
最后一项是还原提示中的复杂关系:
此外,还可以将区域扩散扩展为分层格式,将特定子区域划分为更小的子区域。
如下图所示,当增加区域分割的层次结构时,RPG可以在文本到图像的生成方面实现显著的改进。这为处理复杂的生成任务提供了一个新的视角,使我们有可能生成任意组成的图像。
以上是文生图新SOTA!Pika北大斯坦福联合推出RPG,多模态助力解决文生图两大难题的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
