对MySql查询缓存及SQL Server过程缓存的理解及总结_MySQL
bitsCN.com
一、MySql的Query Cache
1、Query Cache
MySQL Query Cache是用来缓存我们所执行的SELECT语句以及该语句的结果集。MySql在实现Query Cache的具体技术细节上类似典型的KV存储,就是将SELECT语句和该查询语句的结果集做了一个HASH映射并保存在一定的内存区域中。当客户端发起SQL查询时,Query Cache的查找逻辑是,先对SQL进行相应的权限验证,接着就通过Query Cache来查找结果。它不需要经过Optimizer模块进行执行计划的分析优化,更不需要发生同任何存储引擎的交互,减少了大量的磁盘IO和CPU运算,所以有时候效率非常高。
2、Query Cache设置参数
可以通过调整 MySQL的参数打开并设置它的Query Cache功能,主要有以下5个参数:
(1)、query_cache_limit:允许缓存的单条查询结果集的最大容量,默认是1MB,超过此参数设置的查询结果集将不会被缓存;
(2)、query_cache_min_res_unit:设置查询缓存Query Cache每次分配内存的最小空间大小,即每个查询的缓存最小占用的内存空间大小;
(3)、query_cache_size:设置 Query Cache 所使用的内存大小,默认值为0,大小必须是1024的整数倍,如果不是整数倍,MySQL 会自动调整降低最小量以达到1024的倍数;
(4)、query_cache_type:控制 Query Cache 功能的开关,可以设置为0、1、2三种,意义分别如下:
a、0(OFF):关闭 Query Cache 功能,任何情况下都不会使用 Query Cache;
b、1(ON):开启 Query Cache 功能,但是当SELECT语句中使用SQL_NO_CACHE提示后,将不使用Query Cache;
c、2(DEMAND):开启Query Cache 功能,但是只有当SELECT语句中使用了SQL_CACHE 提示后,才使用Query Cache。
(5)、query_cache_wlock_invalidate:控制当有写锁定发生在表上的时刻是否先失效该表相关的Query Cache,如果设置为 1(TRUE),则在写锁定的同时将失效该表相关的所有Query Cache,如果设置为0(FALSE)则在锁定时刻仍然允许读取该表相关的Query Cache。
3、Query Cache和性能
任何事情过犹不及,尤其对于某些写频繁的系统,开启Query Cache功能可能并不能让系统性能有提升,有时反而会有下降。原因是MySql为了保证Query Cache缓存的内容和实际数据绝对一致,当某个数据表发生了更新、删除及插入操作,MySql都会强制使所有引用到该表的查询SQL的Query Cache失效。对于密集写操作,启用查询缓存后很可能造成频繁的缓存失效,间接引发内存激增及CPU飙升,对已经非常忙碌的数据库系统这是一种极大的负担。
4、其他
Query Cache因MySql的存储引擎不同而实现略有差异,比如MyISAM,缓存的结果集存储在OS Cache中,而最流行的InnoDB则放在Buffer Pool中。
二、SQL Server的Procedure Cache
SQL Server没有类似MySql的Query Cache机制,但是它有自己的缓存机制。SQL Server不会简单直接地缓存SQL查询结果集,而是缓存它所读取过的查询数据页(数据缓存Data Buffer),同时它还缓存执行计划(过程缓存Procedure Cache),下面就谈谈我们所熟知的过程缓存。
1、SQL执行过程
SQL语句在执行前首先需要被编译,接着需要通过SQL Server查询引擎进行优化,然后得到优化后的执行计划,最后SQL按照执行计划被执行。
2、过程缓存(Procedure Cache)
创建执行计划会占用CPU资源,当执行计划被创建后,SQL Server查询引擎默认会自动缓存执行计划。
对于整体相似,仅仅是参数不同的SQL语句,SQL Server可以重用缓存的执行计划。
但对于不同的SQL语句,SQL Server并不能重复使用以前的执行计划,而需要重新编译出一个新的执行计划,因为SQL Server查询引擎会自动缓存执行计划,每一个新的执行计划都会占用SQL Server的内存。
在SQL Server可用内存足够使用的情况下,查询引擎并不主动清除以前保存的查询计划。所以,某些情况下,一条相似的SQL语句,仅仅因为写法不同,而凭空多出了很多执行计划,对于相似的SQL,这些多余的执行计划白白地占据着内存,大大影响SQL Server中缓存的查询计划数目。
对于上面这种情况,如果限定了SQL Server最大可用内存,它将导致SQL Server可用内存减少,从而在执行查询时尤其是大的数据查询时与磁盘发生更多的内存页交换;如果没有设置最大可用内存,则SQL Server由于缓存了太多执行计划,从而使内存占用过大。
3、如何减少过程缓存
对于减少过程缓存的占用,主要是可以通过使用参数化查询。
参数化查询的关键是查询优化器将创建一个可以重用的缓存计划(SQL Server查询优化器将查询重新编写为一个参数化SQL语句),这个可重用的缓存计划消除了对这些类似SQL语句的每一次执行都创建一个缓存计划的需求。通过创建一个可重用计划,SQL Server就减少了存放类似的执行计划所需的内存使用。
对于开发人员,我们一般可以通过下面两种方式实现参数化查询:
(1)、使用存储过程执行SQL语句;
(2)、使用sp_executesql 方式执行SQL语句。
关于使用存储过程执行SQL,再说句题外话:对于存储过程一直以来有颇多争议,比如ORM派认为存储过程是完全面向过程的不易扩展不易维护的等等等等。根据我个人的开发经验,简单的几乎没有逻辑的存储过程我建议多用,但是复杂的存储过程一直以来都是BUG集中营,而且后期维护成本奇高(听我司架构师讲过,某重要业务系统的数据库有个八千多行的存储过程,两百多个变量,没有人敢动),逻辑最好通过应对剧烈变化的业务逻辑层来写。现在我们有了成熟的ORM,还有分层,开发中要绝对避免写过长且逻辑复杂的存储过程,否则面对变化,日积月累再出现几个八千行的存储过程也不是没有可能。
参考:
>
http://www.sql-server-performance.com/2004/data-cache/
>
bitsCN.com
热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显着提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。 StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显着降低了使用AI

一先导与重点文章主要介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。这里重点理解自车到相机刚体转换(外参),相机到图像转换(内参),图像到像素有单位转换。3d向2d转换会有相应的畸变,平移等。重点:自车坐标系相机机体坐标系需要被重写的是:平面坐标系像素坐标系难点:要考虑图像畸变,去畸变和加畸变都是在像平面上去补偿二简介视觉系统一共有四个坐标系:像素平面坐标系(u,v)、图像坐标系(x,y)、相机坐标系()和世界坐标系()。每种坐标系之间均存在联系,

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

笔者的一些个人思考在自动驾驶领域,随着BEV-based子任务/端到端方案的发展,高质量的多视图训练数据和相应的仿真场景构建愈发重要。针对当下任务的痛点,“高质量”可以解耦成三个方面:不同维度上的长尾场景:如障碍物数据中近距离的车辆以及切车过程中精准的朝向角,以及车道线数据中不同曲率的弯道或较难采集的匝道/汇入/合流等场景。这些往往靠大量的数据采集和复杂的数据挖掘策略,成本高昂。3D真值-图像的高度一致:当下的BEV数据获取往往受到传感器安装/标定,高精地图以及重建算法本身的误差影响。这导致了我

突然发现了一篇19年的论文GSLAM:AGeneralSLAMFrameworkandBenchmark开源代码:https://github.com/zdzhaoyong/GSLAM直接上全文,感受这项工作的质量吧~1摘要SLAM技术最近取得了许多成功,并吸引了高科技公司的关注。然而,如何同一现有或新兴算法的界面,一级有效地进行关于速度、稳健性和可移植性的基准测试仍然是问题。本文,提出了一个名为GSLAM的新型SLAM平台,它不仅提供评估功能,还为研究人员提供了快速开发自己的SLAM系统的有用

请留意,这个方块人正在紧锁眉头,思考着面前几位“不速之客”的身份。原来她陷入了危险境地,意识到这一点后,她迅速展开脑力搜索,寻找解决问题的策略。最终,她决定先逃离现场,然后尽快寻求帮助,并立即采取行动。与此同时,对面的人也在进行着与她相同的思考……在《我的世界》中出现了这样一个场景,所有的角色都由人工智能控制。他们每个人都有着独特的身份设定,比如之前提到的女孩就是一个年仅17岁但聪明勇敢的快递员。他们拥有记忆和思考能力,在这个以《我的世界》为背景的小镇中像人类一样生活。驱动他们的,是一款全新的、

23年9月国防科大、京东和北理工的论文“DeepModelFusion:ASurvey”。深度模型融合/合并是一种新兴技术,它将多个深度学习模型的参数或预测合并为一个模型。它结合了不同模型的能力来弥补单个模型的偏差和错误,以获得更好的性能。而大规模深度学习模型(例如LLM和基础模型)上的深度模型融合面临着一些挑战,包括高计算成本、高维参数空间、不同异构模型之间的干扰等。本文将现有的深度模型融合方法分为四类:(1)“模式连接”,通过一条损失减少的路径将权重空间中的解连接起来,以获得更好的模型融合初
