机器学习中七种常用的线性降维技术总结
上篇文章中我们主要总结了非线性的降维技术,本文我们来总结一下常见的线性降维技术。
1、Principal Component Analysis (PCA)
PCA是一种广泛应用的降维技术,可以将高维数据集转换为更易处理的低维表示,同时保留数据的关键特征。通过识别数据中方差最大的方向(主成分),PCA能够将数据投影到这些方向上,实现降维的目标。
PCA的核心思想是将原始数据转换到一个新的坐标系,以最大化数据的方差。这些新坐标轴称为主成分,由原始特征线性组合而成。保留方差最大的主成分,实质上保留了数据的关键信息。通过舍弃方差较小的主成分,可以实现降维的目的。
PCA 的步骤如下:
- 标准化数据:对原始数据进行标准化处理,使得每个特征的均值为 0,方差为 1。
- 计算协方差矩阵:计算标准化后的数据的协方差矩阵。
- 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
- 选择主成分:按照特征值的大小选择前 k 个特征向量作为主成分,其中 k 是降维后的维度。
- 投影数据:将原始数据投影到选定的主成分上,得到降维后的数据集。
PCA可以用于数据降维、特征提取和模式识别等任务。在使用PCA时,需要确保数据满足线性可分的基本假设,并进行必要的数据预处理和理解,以获得准确的降维效果。
2、Factor Analysis (FA)
Factor Analysis (FA) is a statistical technique used to identify the underlying structure or factors among observed variables. It aims to uncover the latent factors that account for the shared variance among the observed variables, ultimately reducing them to a smaller number of unrelated variables.
FA 和 PCA 有些相似,但也有一些重要的区别:
- 目标:PCA 旨在找到最大方差的方向,而 FA 旨在找到潜在的变量(因素),这些变量能够解释观察到的变量之间的共同变异。
- 假设:PCA 假设观察到的变量是观察到的原始特征,而 FA 假设观察到的变量是潜在因素的线性组合和随机误差的总和。
- 解释性:PCA 往往更直接,因为它的主成分是原始特征的线性组合。而 FA 的因素可能不太容易解释,因为它们是观察到的变量的线性组合,而非原始特征。
- 旋转:在 FA 中,因素通常会进行旋转,以使它们更易于解释。
因子分析在心理学、社会科学和市场研究等领域广泛应用。它有助于简化数据集、发现潜在结构和减少测量误差。但在选择因子数量和旋转方法时需慎重,以确保结果可解释且有效。
3、Linear Discriminant Analysis,LDA
线性判别分析(Linear Discriminant Analysis,LDA)是一种用于降维和特征提取的监督学习技术。它与主成分分析(PCA)不同,因为它不仅考虑了数据的方差结构,还考虑了数据的类别信息。LDA 旨在找到一个投影方向,最大化不同类别之间的距离(类间散布),同时最小化同一类别内部的距离(类内散布)。
LDA 的主要步骤如下:
- 计算类别的均值向量:对于每个类别,计算该类别下所有样本的均值向量。
- 计算类内散布矩阵(Within-class scatter matrix):对于每个类别,计算该类别下所有样本与其均值向量之间的散布矩阵,并将它们求和。
- 计算类间散布矩阵(Between-class scatter matrix):计算所有类别的均值向量与总体均值向量之间的散布矩阵。
- 计算特征值和特征向量:对于矩阵的逆矩阵乘以类间散布矩阵,得到的矩阵进行特征值分解,得到特征值和特征向量。
- 选择投影方向:选择特征值最大的前 k 个特征向量作为投影方向,其中 k 是降维后的维度。
- 投影数据:将原始数据投影到选定的投影方向上,得到降维后的数据。
LDA 的优点在于它考虑了数据的类别信息,因此生成的投影能更好地区分不同类别之间的差异。它在模式识别、人脸识别、语音识别等领域中有着广泛的应用。LDA 在处理多类别和类别不平衡的情况下可能会遇到一些问题,需要特别注意。
4、Eigendecomposition
Eigendecomposition(特征值分解)是一种用于对方阵进行分解的数学技术。它将一个方阵分解为一组特征向量和特征值的乘积形式。特征向量表示了在转换中不改变方向的方向,而特征值表示了在转换中沿着这些方向的缩放比例。
给定一个方阵 AA,其特征值分解表示为:
其中,Q是由 A 的特征向量组成的矩阵,Λ是对角矩阵,其对角线上的元素是 A的特征值。
特征值分解有许多应用,包括主成分分析(PCA)、特征脸识别、谱聚类等。在PCA中,特征值分解用于找到数据协方差矩阵的特征向量,从而找到数据的主成分。在谱聚类中,特征值分解用于找到相似性图的特征向量,从而进行聚类。特征脸识别利用了特征值分解来识别人脸图像中的重要特征。
虽然特征值分解在许多应用中非常有用,但并非所有的方阵都能进行特征值分解。例如,奇异矩阵(singular matrix)或非方阵就不能进行特征值分解。特征值分解在大型矩阵计算上可能是非常耗时的。
5、Singular value decomposition (SVD)
奇异值分解(Singular Value Decomposition,SVD)是一种用于矩阵分解的重要技术。它将一个矩阵分解为三个矩阵的乘积形式,这三个矩阵分别是一个正交矩阵、一个对角矩阵和另一个正交矩阵的转置。
给定一个 m × n 的矩阵 AA,其奇异值分解表示为:
其中,U 是一个 m × m 的正交矩阵,称为左奇异向量矩阵;Σ 是一个 m × n 的对角矩阵,其对角线上的元素称为奇异值;VT 是一个 n × n 的正交矩阵的转置,称为右奇异向量矩阵。
奇异值分解具有广泛的应用,包括数据压缩、降维、矩阵逆求解、推荐系统等。在降维中,只保留奇异值较大的项,可以实现对数据的有效压缩和表示。在推荐系统中,通过奇异值分解可以对用户和项目之间的关系进行建模,从而提供个性化的推荐。
奇异值分解还可以用于矩阵逆求解,特别是对于奇异矩阵。通过保留奇异值较大的项,可以近似求解逆矩阵,从而避免了对奇异矩阵求逆的问题。
6、Truncated Singular Value Decomposition (TSVD)
截断奇异值分解(Truncated Singular Value Decomposition,TSVD)是奇异值分解(SVD)的一种变体,它在计算中只保留最重要的奇异值和对应的奇异向量,从而实现数据的降维和压缩。
给定一个 m × n 的矩阵 AA,其截断奇异值分解表示为:
其中,Uk 是一个 m × k 的正交矩阵,Σk 是一个 k × k 的对角矩阵,VkT 是一个 k × n 的正交矩阵的转置,这些矩阵对应于保留最重要的 k 个奇异值和对应的奇异向量。
TSVD 的主要优点在于它可以通过保留最重要的奇异值和奇异向量来实现数据的降维和压缩,从而减少了存储和计算成本。这在处理大规模数据集时尤其有用,因为可以显着减少所需的存储空间和计算时间。
TSVD 在许多领域都有应用,包括图像处理、信号处理、推荐系统等。在这些应用中,TSVD 可以用于降低数据的维度、去除噪声、提取关键特征等。
7、Non-Negative Matrix Factorization (NMF)
Non-Negative Matrix Factorization (NMF) 是一种用于数据分解和降维的技术,其特点是分解得到的矩阵和向量都是非负的。这使得 NMF 在许多应用中都很有用,特别是在文本挖掘、图像处理和推荐系统等领域。
给定一个非负矩阵VV,NMF 将其分解为两个非负矩阵WW 和HH 的乘积形式:
其中,W 是一个m × k 的非负矩阵,称为基矩阵( basis matrix)或者特征矩阵(feature matrix),H 是一个k × n 的非负矩阵,称为系数矩阵(coefficient matrix)。这里的 k 是降维后的维度。
NMF 的优点在于它能够得到具有物理含义的分解结果,因为所有的元素都是非负的。这使得 NMF 在文本挖掘中能够发现潜在的主题,而在图像处理中能够提取出图像的特征。此外,NMF 还具有数据降维的功能,可以减少数据的维度和存储空间。
NMF 的应用包括文本主题建模、图像分割与压缩、音频信号处理、推荐系统等。在这些领域中,NMF 被广泛应用于数据分析和特征提取,以及信息检索和分类等任务中。
总结
线性降维技术是一类用于将高维数据集映射到低维空间的技术,其核心思想是通过线性变换来保留数据集的主要特征。这些线性降维技术在不同的应用场景中有其独特的优势和适用性,可以根据数据的性质和任务的要求选择合适的方法。例如,PCA适用于无监督的数据降维,而LDA适用于监督学习任务。
结合前一篇文章,我们介绍了10种非线性降维技术核7种线性降维技术,下面我们来做个总结
线性降维技术:基于线性变换将数据映射到低维空间,适用于线性可分的数据集;例如数据点分布在一个线性子空间上的情况;因为其算法简单,所以计算效率高,易于理解和实现;通常不能捕捉数据中的非线性结构,可能会导致信息丢失。
非线性降维技术:通过非线性变换将数据映射到低维空间;适用于非线性结构的数据集,例如数据点分布在流形上的情况;能够更好地保留数据中的非线性结构和局部关系,提供更好的可视化效果;计算复杂度较高,通常需要更多的计算资源和时间。
如果数据是线性可分的或者计算资源有限,可以选择线性降维技术。而如果数据包含复杂的非线性结构或者需要更好的可视化效果,可以考虑使用非线性降维技术。在实践中,也可以尝试不同的方法,并根据实际效果来选择最合适的降维技术。
以上是机器学习中七种常用的线性降维技术总结的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

Go语言在机器学习领域的应用潜力巨大,其优势在于:并发性:支持并行编程,适合机器学习任务中的计算密集型操作。高效性:垃圾收集器和语言特性确保代码高效,即使处理大型数据集。易用性:语法简洁,学习和编写机器学习应用程序容易。
