目录
传统的手动测试理念
手动测试的困境
测试自动化的必要性
什么是自动化测试?
大型主机现代化过程中的自动化测试方法
GenAI的广泛利用
如何使用GenAI生成自动化测试脚本
小结
译者介绍
首页 科技周边 人工智能 生产式AI驱动的主机自动化测试

生产式AI驱动的主机自动化测试

Feb 26, 2024 am 11:34 AM
生成式ai 主机自动化

译者 | 陈峻

审校 | 重楼

将传统大型主机应用的代码和数据迁移到现代化技术架构上,被认为是企业数字化发展的关键步骤。在追求效率和可扩展性的过程中,这种转变通常涉及从传统大型主机环境迁移到更灵活的云计算或内部部署方案中。这样的转型有助于企业实现更高的灵活性和创新能力,同时降低成本和提高安全性。这种迁移还可以为企业带来更好的资源利用率和更快的市场响应能力。企业需要谨慎计划和执行这一转变,确保数据迁移和应用重构过程顺利进行,以确保业务连续性和数据安全。通过将传统大型主机应用迁移到现代化技术架构上,企业可以更好地适应快速变化的市场需求,实现

生产式AI驱动的主机自动化测试

不过,随着业务环境的动态变化,也会使得迁移过程变得更加复杂。这不仅仅是技术上的资源重新部署,而且是一种根本性的转变,因此往往需要经历严格的测试,以确保各项功能的等效,进而保持应用在运行上的完整性和性能上的标准化。

同时,在迁移之后,应用程序经常会在新的要求、业务战略的演变、以及监管标准变化的驱动下,被迫进行大量的修改。而每一次修改,无论是微小的调整、还是重大的“翻修”,都必须经过严密的测试。其中最关键的挑战就在于,如何确保新的变化能够与现有的功能和谐集成,而不会造成意想不到的后果或中断。可见,验证新功能和保留现有功能的双重要求,凸显了在迁移后自动化测试套件的重要性。

近年来,生成式AI(GenAI)的广泛应用,已辐射到了各个领域。如果将其引入大型主机的现代化过程,不但有望让企业在软件质量、运营效率等方面取得显著改善,而且能够带来软件开发和质量保证理念上的根本转变,进而让企业最终获得可观的投资回报。

我将与您讨论如何利用适当的自动化测试方法、工具和最佳实践,确保在技术平稳过渡中维持现代化大型主机应用的固有质量和性能。

传统的手动测试理念

一直以来,大型主机环境并不愿意接受自动化的测试方式。由Compuware和Vanson Bourne联合开展的2019年全球调查示,仅有7%的受访者为大型主机应用采用了自动化的测试用例,这足以说明业界对此的态度。

手动测试的困境

作为对比,手动测试则是许多企业普遍采用的传统方法。不过,在复杂的大型主机现代化过程中,该方法越来越显得力不从心,而且容易出错。毕竟,测试工程师需要手动验证每个方案和业务规则。这一过程就充满了人为出错的可能性。而且,鉴于许多大型主机应用的高风险性和关键任务性特点,我们一旦在测试过程中忽略了某个细微的错误,则可能会导致严重的生产问题、大量的停机时间、乃至经济损失。因此,该缺点会变得尤为突出。此外,人工测试还存在着如下缺陷:

1. 遗漏与不准确:手动处理大量测试用例,会增加遗漏关键场景、以及数据验证不准确的风险。

2. 耗时性:手动方法需要大量时间对每个方面进行彻底测试,因此在快节奏的开发环境中效率不高。

3. 可扩展性问题:随着应用程序的扩展和演进,人工测试所需的工作量会成倍增加,更无法有效地识别错误。

有的企业可能会直观地想到扩大人工测试团队。不过,这并非一个可行的解决方案。此举既会导致成本效率的低下,又无法解决人工测试流程的固有局限性。企业需要通过DevOps等现代方法,来整合自动化测试流程,以提高效率并减少错误。

测试自动化的必要性

总的说来,通过在现代化大型主机应用程序中集成自动化测试流程,企业可以大幅提高迁移的效率和准确性。当然,大型主机环境中自动化测试的采用率并不高。有的企业认为这是挑战,但也有的企业视之为巨大的转型机遇。毕竟,在测试中采用自动化不仅仅是一种技术升级,更是一种降低风险、节省时间和优化资源利用的战略举措。

对于希望在快速发展的技术环境中,保持竞争力和效率的企业来说,这一转变至关重要。根据《DevOps状态报告》显示,自动化测试在优化操作工作流程和确保应用程序可靠性等方面,能够发挥巨大的作用。

什么是自动化测试?

根据Atlassian的定义,自动化测试是通过运用软件工具,自动完成那些由人工驱动的软件产品的审查和验证过程。其速度、效率和精度,都超越了传统人工测试方法的局限性。也就是说,自动化测试有助于在加快应用变化的同时,确保其质量和可靠性不受影响。自动化测试不仅能够简化新变化的验证过程,也可以监控现有功能的完整性,从而在现代化应用的无缝过渡和持续维护方面发挥关键性作用。

在追求优化软件测试流程的过程中,采用自动化测试往往需要初始的人工投入,会涉及到测试工程师对于应用程序底层错综复杂的业务逻辑的理解。这种理解对于使用Selenium等框架有效地生成自动化测试用例是至关重要的。该阶段虽然会耗费大量人力,却是一项基础性工作。毕竟后续的自动化测试将大幅减少测试本身对于人工的依赖,尤其是在重复和广泛的测试场景中。而且,自动化框架一旦被建立,就会成为对应用程序进行持续评估的强大机制。其优势在于,它善于识别因应用更改而可能出现的错误或bug。

大型主机现代化过程中的自动化测试方法

在软件工程领域,针对大规模的迁移或现代化大型主机应用程序的自动化测试,往往需要全面了解应用程序中的所有业务规则,以便为通常由数百万行代码组成的庞大代码库,生成自动化的测试用例。这是一项复杂而又相当艰巨的任务。鉴于难以实现100%的代码覆盖率,我们需要在测试覆盖深度与实际可行性之间实现平衡,以确保关键性的业务逻辑,能够得到充分的测试覆盖。

在这种情况下,GenAI等新兴技术提供了一种可能性。它能够自动生成自动化测试脚本,以简化大型主机现代化项目的测试流程,为软件开发中的质量保证提供一种更高效、更准确、更可扩展的方法。

GenAI的广泛利用

在深入研究GenAI如何在大型主机现代化中实现自动化测试之前,让我们简单了解一下GenAI。从根本上说,GenAI代表了人工智能的一个方面。它通过生成式模型,来生成各种文本、图像或其他媒介。这些生成式人工智能模型善于学习输入训练数据的模式和结构元素,进而生成能够反映这些特征的新数据。显然,此类系统主要依赖机器学习模型,尤其是深度学习领域的模型。

自然语言生成(Natural Language Generation,NLG)是与大型主机现代化强相关的一种GenAI形式。它能够在大语言模型(large language models,LLM)的支持下,产生出类似人类的文本。通常,LLM在大量文本数据的语料库中接受训练,使之能够辨别和复制语言的细微差别和结构。因此,这种训练使得它们能够执行各种自然语言处理任务,包括:文本生成、翻译摘要、以及情感分析等。值得注意的是,LLM还能够熟练地生成准确的计算机程序代码。

目前,大语言模型的著名用例包括:GPT-3(Generative Pre-trained Transformer 3)、BERT(Bidirectional Encoder Representations from Transformers)和T5(Text-to-Text Transfer Transformer)。这些模型通常建立在深度神经网络的基础上,尤其是那些采用了Transformer架构的模型。因此,它们在处理文本等顺序数据方面,表现出了卓越的功效。大量的训练数据(包括数百万、甚至数十亿的单词或文档)使得这些模型能够全面掌握各种编程语言。它们不仅在生成连贯且与上下文相关的文本方面表现出色,而且在预测语言模式(如完成句子或回答查询)方面也很优秀。

当前,某些大语言模型还可以理解和生成多种语言的文本,从而提高其在全球范围内的实用性,从为聊天机器人和虚拟助手提供“智力”,到支持内容生成、语言翻译与摘要等应用领域,LLM的多功能性都能够带来不俗的表现。

如何使用GenAI生成自动化测试脚本

在软件测试领域,LLM可以帮助我们从应用程序的代码中提取业务逻辑,并将这些规则转化为人类可读的格式,进而生成相应的自动化测试脚本。同时,它也能够帮助我们遴选出必要数量的测试用例,以满足代码片段的各种潜在覆盖率要求。

通常,使用GenAI生成应用程序代码的自动化测试脚本,需要如下结构化的三步流程:

1. 使用GenAI提取业务规则:作为初始阶段,我们需要使用GenAI从应用程序中提炼业务规则。该流程会对提炼到的规则按照详细程度进行判定,并以人类可读的格式进行诠释。此外,GenAI也有助于全面了解给定代码段的所有潜在结果。这些知识对于确保创建准确、相关的测试脚本是至关重要的。

2. 利用GenAI在功能层面生成自动化测试脚本:根据提取到的业务逻辑,测试工程师能够对应用程序的功能拥有全面的了解,以便在功能层面上利用GenAI来开发测试脚本。该步骤涉及到确定所需的测试脚本数量,并识别可能被排除在外的场景。当然,此类自动化测试脚本的代码覆盖范围,往往是由团队集体决定的。

3. 由主题专家(Subject Matter Experts,SME)进行验证和推理添加:在最后阶段,一旦提取了业务逻辑,并生成了相应的自动化测试脚本,测试专家就会验证这些脚本,并有权进行添加、修改或删除等操作。此类干预解决了GenAI输出可能产生的潜在概率错误,并提高了自动化测试脚本的质量确定性。

上述过程看似复杂,实际上却能充分利用GenAI的能力,以简化测试脚本生成的流程,并确保自动化的效率与人类专业知识的完美结合。其中,测试人员在验证阶段的参与尤为重要。这会让人工智能生成的输出结果,能够建立在实际、真实的应用知识之上,从而显著提高测试脚本的可靠性和适用性。

小结

综上所述,作为一种提高效率的工具,GenAI可以通过其NLG能力生成自动化测试脚本,进而提高大型主机现代化的软件测试过程的准确性和可靠性。同时,GenAI需要通过结构化的三步流程,来完善AI生成的输出结果,并确保自动化脚本不仅在技术上合理,而且在实践中适用,从而体现AI能力与人类专业知识的和谐统一。而这种融合对于解决现代化大型主机应用程序的复杂性和动态要求,显然是至关重要的。

译者介绍

陈峻(Julian Chen),51CTO社区编辑,具有十多年的IT项目实施经验,善于对内外部资源与风险实施管控,专注传播网络与信息安全知识与经验。

原文标题:GenAI-Driven Automation Testing in Mainframe Modernization,作者:sampath amatam)


以上是生产式AI驱动的主机自动化测试的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

华裔数学家陶哲轩领导白宫生成式AI工作组,李飞飞将在小组演讲 华裔数学家陶哲轩领导白宫生成式AI工作组,李飞飞将在小组演讲 May 25, 2023 am 10:36 AM

·美国总统科技顾问委员会成立的生成式AI工作组旨在帮助评估人工智能领域的关键机遇和风险,并就尽可能确保公平、安全、负责地开发和部署这些技术向美国总统提供意见。·AMD的首席执行官苏姿丰(LisaSu)和谷歌云首席信息安全官菲尔·维纳布尔斯(PhilVenables)也是这个工作组的成员。华裔数学家、菲尔茨奖获得者陶哲轩。当地时间5月13日,华裔数学家、菲尔茨奖获得者陶哲轩公布消息,他和物理学家劳拉·格林(LauraGreene)共同领导美国总统科技顾问委员会(PCAST)的生成式人工智能工作组。

从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互? 从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互? Jun 05, 2023 pm 12:30 PM

图片来源@视觉中国文|王吉伟从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?换个角度,从人机交互看LLM如何影响RPA?影响程序开发与流程自动化人机交互的RPA,现在也要被LLM改变了?LLM如何影响人机交互?生成式AI怎么改变RPA人机交互?一文看明白:大模型时代来临,基于LLM的生成式AI正在快速变革RPA人机交互;生成式AI重新定义人机交互,LLM正在影响RPA软件架构变迁。如果问RPA对程序开发以及自动化有哪些贡献,其中一个答案便是它改变了人机交互(HCI,h

生成式AI为什么受到各行业追捧? 生成式AI为什么受到各行业追捧? Mar 30, 2024 pm 07:36 PM

生成式AI是人类一种人工智能技术,可以生成各种类型的内容,包括文本、图像、音频和合成数据。那么什么是人工智能?人工智能和机器学习之间的区别是什么?人工智能是学科,是计算机科学的一个分支,研究智能代理的创建,这些智能代理是可以推理、学习和自主执行动作的系统。从本质上讲,人工智能与建筑像人类一样思考和行动的机器的理论和方法有关。在这个学科中,机器学习ML是人工智能的一个领域。它是根据输入数据训练模型的程序或系统,经过训练的模型可以从新的或未见过的数据中做出有用的预测,这些数据来自于训练模型的统一数据

告别设计软件一句话生成效果图,生成式AI颠覆装饰装修领域,附28款流行工具 告别设计软件一句话生成效果图,生成式AI颠覆装饰装修领域,附28款流行工具 Jun 10, 2023 pm 03:33 PM

▲本图由AI生成酷家乐、三维家、东易日盛等已出手,装饰装修产业链大举引入AIGC生成式AI在装饰装修领域有哪些应用?对设计师有啥影响?一文看懂告别各种设计软件一句话生成效果图,生成式AI正颠覆装饰装修领域使用人工智能增强能力提升设计效率,生成式AI变革装饰装修行业生成式AI对装饰装修行业有哪些影响?未来发展趋势如何?一文看懂LLM变革装饰装修,这28款流行生成式AI装修设计工具值得上手体验文/王吉伟在装饰装修领域,最近与AIGC关联的消息着实不少。Collov推出了生成式AI驱动的设计工具Col

观察:将生成式AI应用于网络自动化有何潜力? 观察:将生成式AI应用于网络自动化有何潜力? Aug 17, 2023 pm 07:57 PM

根据市场研究公司Omdia的一份最新报告,预计到2023年,生成式人工智能(GenAI)将成为一个引人注目的技术趋势,为企业和个人带来重要的应用,包括教育。在电信领域,GenAI的用例主要集中在提供个性化营销内容或支持更复杂的虚拟助手,以提升客户体验尽管生成式AI在网络运营中的应用并不明显,但EnterpriseWeb进行了一项有趣的概念验证,展示了该领域中生成式AI的潜力生成式AI在网络自动化方面的能力和限制生成式AI在网络运营中的早期应用之一是利用交互式指导替代工程手册来帮助安装网络元件,从

海尔和西门子生成式AI创新背后的科技巨头是哪家? 海尔和西门子生成式AI创新背后的科技巨头是哪家? Nov 21, 2023 am 09:02 AM

亚马逊云科技大中华区战略业务发展部总经理顾凡2023年,大语言模型和生成式AI在全球市场“狂飙”,不仅引发了AI和云计算产业的“排山倒海”式跟进,也在强力吸引制造巨头们的入局。海尔创新设计中心就打造了全国首个AIGC工业设计解决方案,大幅缩短设计周期,并降低概念设计成本,不仅将整体概念设计提速了83%、集成渲染效率也提升了约90%,高效解决了设计阶段人力成本高、概念产出与通过效率低等问题。西门子中国基于自有模型的智能知识库暨智能会话机器人“小禹”,具备自然语言处理、知识库检索、通过数据训练大语言

腾讯混元升级模型矩阵,云上推出256k长文模型​ 腾讯混元升级模型矩阵,云上推出256k长文模型​ Jun 01, 2024 pm 01:46 PM

大模型落地加速,“产业实用”成为发展共识。2024年5月17日,腾讯云生成式AI产业应用峰会在北京召开,公布大模型研发、应用产品的系列进展。腾讯混元大模型能力持续升级,多个版本模型hunyuan-pro、hunyuan-standard、hunyuan-lite通过腾讯云对外开放,满足企业客户、开发者在不同场景下的模型需求,落地最优性价比模型方案。腾讯云大模型知识引擎、图像创作引擎、视频创作引擎三大工具发布,打造大模型时代原生工具链,通过PaaS服务简化数据接入、模型精调、应用开发流程,助力企业

变革性趋势:生成式人工智能及其对软件开发的影响 变革性趋势:生成式人工智能及其对软件开发的影响 Feb 26, 2024 pm 10:28 PM

人工智能的崛起正在推动软件开发的快速发展。这一强大技术有可能彻底改变我们构建软件的方法,对设计、开发、测试和部署等各个方面都会产生深远影响。对于企图进入动态软件开发领域的企业来说,生成式人工智能技术的问世为它们提供了前所未有的发展机遇。将这一前沿技术纳入其开发流程后,公司可以大幅提升生产效率、缩短产品上市周期,并推出在激烈竞争的数字市场中脱颖而出的优质软件产品。根据麦肯锡的一份报告,预测到2031年,生成式人工智能市场规模有望达到4.4万亿美元。这一预测不仅反映了一种趋势,更显示出技术和商业格局

See all articles