选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试
OpenAI最近宣布推出他们的最新一代嵌入模型embedding v3,他们声称这是性能最出色的嵌入模型,具备更高的多语言性能。这一批模型被划分为两种类型:规模较小的text-embeddings-3-small和更为强大、体积较大的text-embeddings-3-large。
这些模型的设计和训练方式的信息披露得很少,模型只能通过付费API访问。所以就出现了很多开源的嵌入模型但是这些开源的模型与OpenAI闭源模型相比如何呢?
本文将对这些新模型与开源模型的性能进行实证比较。我们计划建立一个数据检索工作流程,其中关键任务是根据用户的查询,从语料库中找到最相关的文档。
我们的语料库是欧洲人工智能法案,目前正处于验证阶段。这个语料库是全球首个涉及人工智能的法律框架,其独特之处在于拥有24种语言版本。这使得我们能够比较不同语言背景下数据检索的准确性,为人工智能的跨文化应用提供了重要的支持。
我们计划利用多语言文本语料库创建一个自定义合成问题/答案数据集,并使用这个数据集来比较OpenAI和最先进的开源嵌入模型的准确性。我们将分享完整的代码,因为我们的方法可以轻松适应其他数据语料库。
生成自定义Q/ A数据集
首先,我们可以从创建自定义问答(Q/A)数据集开始,这样做的好处在于可以确保数据集不会成为模型训练中的偏差因素,避免类似于MTEB等基准参考中可能出现的情况。此外,通过生成自定义数据集,我们可以根据特定的数据语料库来调整评估过程,这对于类似于检索增强应用程序(RAG)等场景可能非常重要。
我们将按照Llama Index文档中建议的简单流程进行操作。首先,将语料库划分为多个块。接着,针对每个块,利用大型语言模型(LLM)生成一系列合成问题,确保答案在相应的块中。
使用Llama Index之类的LLM数据框架实现此策略非常简单,如下面的代码所示。
from llama_index.readers.web import SimpleWebPageReader from llama_index.core.node_parser import SentenceSplitter language = "EN" url_doc = "https://eur-lex.europa.eu/legal-content/"+language+"/TXT/HTML/?uri=CELEX:52021PC0206" documents = SimpleWebPageReader(html_to_text=True).load_data([url_doc]) parser = SentenceSplitter(chunk_size=1000) nodes = parser.get_nodes_from_documents(documents, show_progress=True)
语料库是欧盟人工智能法案的英文版本,使用这个官方URL直接从Web上获取。本文使用2021年4月的草案版本,因为最终版本尚未适用于所有欧洲语言。所以我们选择的这一版可以用其他23种欧盟官方语言中的任何一种语言替换URL中的language,检索不同语言的文本(BG表示保加利亚语,ES表示西班牙语,CS表示捷克语,等等)。
使用SentenceSplitter对象将文档分成每1000个令牌的块。对于英语来说,这会生成大约100个块。然后将每个块作为上下文提供给以下提示(Llama Index库中建议的默认提示):
prompts={} prompts["EN"] = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, generate only questions based on the below query. You are a Teacher/ Professor. Your task is to setup {num_questions_per_chunk} questions for an upcoming quiz/examination. The questions should be diverse in nature across the document. Restrict the questions to the context information provided." """
这个提示可以生成关于文档块的问题,要为每个数据块生成的问题数量作为参数“num_questions_per_chunk”传递,我们将其设置为2。然后可以通过调用Llama Index库中的generate_qa_embedding_pairs来生成问题:
from llama_index.llms import OpenAI from llama_index.legacy.finetuning import generate_qa_embedding_pairs qa_dataset = generate_qa_embedding_pairs(llm=OpenAI(model="gpt-3.5-turbo-0125",additional_kwargs={'seed':42}),nodes=nodes,qa_generate_prompt_tmpl = prompts[language],num_questions_per_chunk=2 )
我们依靠OpenAI的GPT-3.5-turbo-0125来完成这项任务,结果对象' qa_dataset '包含问题和答案(块)对。作为生成问题的示例,以下是前两个问题的结果(其中“答案”是文本的第一部分):
- What are the main objectives of the proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) according to the explanatory memorandum?
- How does the proposal for a Regulation on artificial intelligence aim to address the risks associated with the use of AI while promoting the uptake of AI in the European Union, as outlined in the context information?
OpenAI嵌入模型
评估函数也是遵循Llama Index文档:首先所有答案(文档块)的嵌入都存储在VectorStoreIndex中,以便有效检索。然后评估函数循环遍历所有查询,检索前k个最相似的文档,并根据MRR (Mean Reciprocal Rank)评估检索的准确性,代码如下:
def evaluate(dataset, embed_model, insert_batch_size=1000, top_k=5):# Get corpus, queries, and relevant documents from the qa_dataset objectcorpus = dataset.corpusqueries = dataset.queriesrelevant_docs = dataset.relevant_docs # Create TextNode objects for each document in the corpus and create a VectorStoreIndex to efficiently store and retrieve embeddingsnodes = [TextNode(id_=id_, text=text) for id_, text in corpus.items()]index = VectorStoreIndex(nodes, embed_model=embed_model, insert_batch_size=insert_batch_size)retriever = index.as_retriever(similarity_top_k=top_k) # Prepare to collect evaluation resultseval_results = [] # Iterate over each query in the dataset to evaluate retrieval performancefor query_id, query in tqdm(queries.items()):# Retrieve the top_k most similar documents for the current query and extract the IDs of the retrieved documentsretrieved_nodes = retriever.retrieve(query)retrieved_ids = [node.node.node_id for node in retrieved_nodes] # Check if the expected document was among the retrieved documentsexpected_id = relevant_docs[query_id][0]is_hit = expected_id in retrieved_ids # assume 1 relevant doc per query # Calculate the Mean Reciprocal Rank (MRR) and append to resultsif is_hit:rank = retrieved_ids.index(expected_id) + 1mrr = 1 / rankelse:mrr = 0eval_results.append(mrr) # Return the average MRR across all queries as the final evaluation metricreturn np.average(eval_results)
嵌入模型通过' embed_model '参数传递给评估函数,对于OpenAI模型,该参数是一个用模型名称和模型维度初始化的OpenAIEmbedding对象。
from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding(model=model_spec['model_name'],dimensinotallow=model_spec['dimensions'])
dimensions参数可以缩短嵌入(即从序列的末尾删除一些数字),而不会失去嵌入的概念表示属性。OpenAI在他们的公告中建议,在MTEB基准测试中,嵌入可以缩短到256大小,同时仍然优于未缩短的text-embedding-ada-002嵌入(大小为1536)。
我们在四种不同的嵌入模型上运行评估函数:
两个版本的text-embedding-3-large:一个具有最低可能维度(256),另一个具有最高可能维度(3072)。它们被称为“OAI-large-256”和“OAI-large-3072”。
OAI-small:text-embedding-3-small,维数为1536。
OAI-ada-002:传统的文本嵌入text-embedding-ada-002,维度为1536。
每个模型在四种不同的语言上进行评估:英语(EN),法语(FR),捷克语(CS)和匈牙利语(HU),分别涵盖日耳曼语,罗曼语,斯拉夫语和乌拉尔语的例子。
embeddings_model_spec = { } embeddings_model_spec['OAI-Large-256']={'model_name':'text-embedding-3-large','dimensions':256} embeddings_model_spec['OAI-Large-3072']={'model_name':'text-embedding-3-large','dimensions':3072} embeddings_model_spec['OAI-Small']={'model_name':'text-embedding-3-small','dimensions':1536} embeddings_model_spec['OAI-ada-002']={'model_name':'text-embedding-ada-002','dimensions':None} results = [] languages = ["EN", "FR", "CS", "HU"] # Loop through all languages for language in languages: # Load datasetfile_name=language+"_dataset.json"qa_dataset = EmbeddingQAFinetuneDataset.from_json(file_name) # Loop through all modelsfor model_name, model_spec in embeddings_model_spec.items(): # Get modelembed_model = OpenAIEmbedding(model=model_spec['model_name'],dimensinotallow=model_spec['dimensions']) # Assess embedding score (in terms of MRR)score = evaluate(qa_dataset, embed_model) results.append([language, model_name, score]) df_results = pd.DataFrame(results, columns = ["Language" ,"Embedding model", "MRR"])
MRR精度如下:
嵌入尺寸越大,性能越好。
开源嵌入模型
围绕嵌入的开源研究也是非常活跃的,Hugging Face 的 MTEB leaderboard会经常发布最新的嵌入模型。
为了在本文中进行比较,我们选择了一组最近发表的四个嵌入模型(2024)。选择的标准是他们在MTEB排行榜上的平均得分和他们处理多语言数据的能力。所选模型的主要特性摘要如下。
e5-mistral-7b-instruct:微软的这个E5嵌入模型是从Mistral-7B-v0.1初始化的,并在多语言混合数据集上进行微调。模型在MTEB排行榜上表现最好,但也是迄今为止最大的(14GB)。
multilingual-e5-large-instruct(ML-E5-large):微软的另一个E5模型,可以更好地处理多语言数据。它从xlm-roberta-large初始化,并在多语言数据集的混合上进行训练。它比E5-Mistral小得多(10倍),上下文大小也小得多(514)。
BGE-M3:该模型由北京人工智能研究院设计,是他们最先进的多语言数据嵌入模型,支持100多种工作语言。截至2024年2月22日,它还没有进入MTEB排行榜。
nomic-embed-text-v1 (Nomic- embed):该模型由Nomic设计,其性能优于OpenAI Ada-002和text-embedding-3-small,而且大小仅为0.55GB。该模型是第一个完全可复制和可审计的(开放数据和开源训练代码)的模型。
用于评估这些开源模型的代码类似于用于OpenAI模型的代码。主要的变化在于模型参数:
embeddings_model_spec = { } embeddings_model_spec['E5-mistral-7b']={'model_name':'intfloat/e5-mistral-7b-instruct','max_length':32768, 'pooling_type':'last_token', 'normalize': True, 'batch_size':1, 'kwargs': {'load_in_4bit':True, 'bnb_4bit_compute_dtype':torch.float16}} embeddings_model_spec['ML-E5-large']={'model_name':'intfloat/multilingual-e5-large','max_length':512, 'pooling_type':'mean', 'normalize': True, 'batch_size':1, 'kwargs': {'device_map': 'cuda', 'torch_dtype':torch.float16}} embeddings_model_spec['BGE-M3']={'model_name':'BAAI/bge-m3','max_length':8192, 'pooling_type':'cls', 'normalize': True, 'batch_size':1, 'kwargs': {'device_map': 'cuda', 'torch_dtype':torch.float16}} embeddings_model_spec['Nomic-Embed']={'model_name':'nomic-ai/nomic-embed-text-v1','max_length':8192, 'pooling_type':'mean', 'normalize': True, 'batch_size':1, 'kwargs': {'device_map': 'cuda', 'trust_remote_code' : True}} results = [] languages = ["EN", "FR", "CS", "HU"] # Loop through all models for model_name, model_spec in embeddings_model_spec.items(): print("Processing model : "+str(model_spec)) # Get modeltokenizer = AutoTokenizer.from_pretrained(model_spec['model_name'])embed_model = AutoModel.from_pretrained(model_spec['model_name'], **model_spec['kwargs']) if model_name=="Nomic-Embed":embed_model.to('cuda') # Loop through all languagesfor language in languages: # Load datasetfile_name=language+"_dataset.json"qa_dataset = EmbeddingQAFinetuneDataset.from_json(file_name) start_time_assessment=time.time() # Assess embedding score (in terms of hit rate at k=5)score = evaluate(qa_dataset, tokenizer, embed_model, model_spec['normalize'], model_spec['max_length'], model_spec['pooling_type']) # Get duration of score assessmentduration_assessment = time.time()-start_time_assessment results.append([language, model_name, score, duration_assessment]) df_results = pd.DataFrame(results, columns = ["Language" ,"Embedding model", "MRR", "Duration"])
结果如下:
BGE-M3的表现最好,其次是ML-E5-Large、E5-mistral-7b和Nomic-Embed。BGE-M3模型尚未在MTEB排行榜上进行基准测试,我们的结果表明它可能比其他模型排名更高。虽然BGE-M3针对多语言数据进行了优化,但它在英语方面的表现也比其他模型更好。
因为式开源模型所以一般都需要本地运行,所以我们还特意记录了每个嵌入模型的处理时间。
E5-mistral-7b比其他模型大10倍以上,所以最慢是很正常的
总结
我们把所有的结果做一个汇总
采用开源模型获得了最好的性能,BGE-M3模型表现最佳。该模型具有与OpenAI模型相同的上下文长度(8K),大小为2.2GB。
OpenAI的large(3072)、small 和ada模型的性能非常相似。减小large的嵌入尺寸(256)会导致性能下降,并且没有像OpenAI说的那样比ada更好。
几乎所有型号(ML-E5-large除外)在英语上都表现最好。在捷克语和匈牙利语等语言中,表现存在显著差异,这可能是因为训练的数据比较少。
我们应该付费订阅OpenAI,还是托管一个开源嵌入模型?
OpenAI最近的价格调整使得他们的API变得更加实惠,现在每百万令牌的成本为0.13美元。如果每月处理一百万个查询(假设每个查询涉及大约1K令牌),没那么成本约为130美元。所以可以根据实际需要计算来选择是否托管开源嵌入模型。
当然成本效益并不是唯一的考虑因素。可能还需要考虑延迟、隐私和对数据处理工作流的控制等其他因素。开源模型提供了完全数据控制的优势,增强了隐私性和定制性。
说到延迟,OpenAI的API也存在延迟问题,有时会导致响应时间延长,所有有时候OpenAI的API不一定是最快的选择。
总之,在开源模型和像OpenAI这样的专有解决方案之间做出选择并不是一个简单的答案。开源嵌入提供了一个非常好的可选项,它将性能与对数据的更好控制结合在一起。而OpenAI的产品可能仍然会吸引那些优先考虑便利性的人,特别是如果隐私问题是次要的。
本文代码:https://github.com/Yannael/multilingual-embeddings
以上是选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
