读书笔记 《MySQL技术内幕 InnoDB存储引擎》_MySQL
bitsCN.com
缘由
在微博上看到李嘉诚自述的视频中有这么一句话,大意是:我很喜欢读书,我通常读完一本书,把它记到脑子里,再去换另一本书。当时我突有感想,这些年工作,买过的书也不少,有80余本,基本上每本都是经典的好书,也算是有点收藏的味道吧。但是很多书我都是翻一翻,满足自己对某一方面知识的渴望,但自己真的能记在脑力里的却不多,于是在2012年的年尾,伴随着自己的失业,我也打算好好的选择一些书继续阅读,争取读完了,能记住一些,再换下一本。
状态
首读 —— 《MySQL技术内幕 InnoDB存储引擎》 At 2012/12/20
前言
我不是DBA,我是一名开发者,所以站在开发者的角度来读这本书对自己还是有不少收获的,至少以后在项目中设计和使用数据库的过程中,可以考虑到如何更好的和DBA进行有效的沟通。
获取的知识
InnoDB存储引擎 master thread 的问题?
InnoDB的主线程的代码,在每秒执行的任务中:存在固定的只刷新100个脏页到磁盘、合并20个插入缓冲。在写密集的App中,每秒中可以能产生大于100个的脏页,或是产生大于20个插入缓冲,此时的master thread似乎会忙不过来,或者说它总是做得很慢。即使磁盘能在1秒内处理多于100个页的写入和20个插入缓冲的合并,由于hard coding(硬编码)master thread也只会选择刷新100个脏页和合并20个插入缓冲。同时,当发生宕机需要恢复时,由于很多数据还没有刷新回磁盘,所以可能会导致恢复需要很快的时间,尤其是对于insert buffer。
解决办法
InnoDB Plugin提供了一个参数,用来表示磁盘IO的吞吐量,参数为 innodb_io_capacity,默认值为200。对于刷新到磁盘的数量,会按照 innodb_io_capacity的百分比来刷新相对数量的页。规则如下:
* 在合并插入缓冲时,合并插入缓冲的数量为 innodb_io_capacity 数值的5%。
* 在从缓冲区刷新脏页时,刷新脏页的数量为 innodb_io_capacity。
如果你使用了SSD类的磁盘,或者将几块磁盘做了RAID,当你的存储拥有更高的IO速度时,完全可以将 innodb_io_capacity 的值调得再高点,知道符合你的磁盘IO的吞吐量为止。
慢查询日志
MySQL允许用户通过 long_query_time 参数来设置,默认值是10,代表10秒。默认情况下,MySQL数据库并不启动慢查询日志,需要我们手工将这个参数(log_slow_queries)设为ON,然后启动。
* 注意1
当设置了long_query_time后,MySQL数据库会记录运行时间超过该值的所有SQL语句,但对于运行时间正好等于long_query_time的情况,并不会被记录下。
* 注意2
从MySQL5.1开始,long_query_time开始以微秒记录SQL语句运行时间。
另一个和慢查询日志有关的参数是 log_queries_not_using_indexes,如果运行的SQL语句没有使用索引,则MySQL数据库同样会将这条SQL语句记录到慢查询日志文件。
使用 mysqldumpslow 命令可以分析慢查询日志文件
mysqldumpslow nh122-190-slow.log
MySQL5.1开始可以将慢查询的日志记录放入一张表中,这使我们的查询更加直观。慢查询表在MySQL数据库中,名为slow_log。
参数log_output指定了慢查询输出的格式,默认为FILE,你可以将它设为TABLE,然后就可以查询mysql数据库的slow_log表了。
set global log_output='TABLE';
分区表
MySQL 5.1 后添加对表分区的支持,当然支持的分区类型为水平分区(一表中不同行的记录分配到不同的物理文件中)。此外,MySQL数据库的分区是局部分区索引,一个分区中既存放了数据又存放了索引。
show variables like '%partition%'/G;
MySQL目前支持的分区类型有:
* RANGE分区:行数据基于属于一个给定连续区间的列值放入分区。MySQL5.5开始支持RANGE COLUMNS的分区。
* LIST分区:和RANGE分区类似,只是LIST分区面向的是离散的值。MySQL5.5开始支持LIST COLUMNS的分区。
* HASH分区:根据用户自定义的表达式的返回值来进行分区,返回值不能为负数。
* KEY分区:根据MySQL数据库提供的哈希函数来进行分区。
* 不论创建何种类型的分区,如果表中存在主键或者是唯一索引时,分区别必须是唯一索引的一个组成部分。唯一索引可以是允许NULL值的,并且分区列只要是唯一索引的一个组成部分,不需要整个唯一索引列都是分区列。
* 当建表时没有指定主键,唯一索引时,可以指定任何一个列为分区列。
B+树索引
B+树索引其本质就是B+树在数据库中的实现,但是B+的索引在数据库中有一个特定就是高扇出性,因此在数据库中,B+树的高度一般都在2-3层,也就是对于查询某一键值的行记录,最多只需要2到3次IO,而对于当前的硬盘速度,2-3次IO也就意味着查询时间只需要0.02-0.03秒。
什么时候使用B+树索引
* 访问高选择性字段并从表中取出很少一部分行时,对这个字段添加B+树索引是非常有必要的。
聚集索引和辅助索引
InnoDB存储引擎是索引组织表,即表中数据按照主键顺序存放。而聚集索引就是按照每张表的主键构造一颗B+树,并且叶节点中存放着整张表的行记录数据,因此也让聚集索引的叶节点成为数据页。
每张表只能拥有一个聚集索引。
辅助索引(非聚集索引),叶级别不包含行的全部数据。叶节点除了包含键值以外,每个叶级别中的索引行还包含了一个书签,该书签用来告诉InnoDB存储引擎。
事务的隐式提交
不好的事务习惯
* 在循环中提交
create procedure load1(count int unsigned)begindeclare s int unsigned default 1;declare c char(80) default repreat('a',80);while s <p>* 使用自动提交</p><p>自动提交并不是好习惯,因为这对于初级DBA容易犯错,另外对于一些开发人员可能产生错误的理解,如我们在上面提到的循环提交问题。MySQL数据库默认设置使用自动提交。可以使用如下语句来改变当然自动提交的方式</p><pre class="brush:php;toolbar:false">set autocommit=0;
* 使用自动回滚
create procedure sp_auto_rollback_demo()begindeclare exit handler for sqlexception rollback;start transaction;insert into b select 1;insert into c select 2;insert into b select 1;insert into b select 3;commit;end;
bitsCN.com

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显着提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。 StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显着降低了使用AI

一先导与重点文章主要介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。这里重点理解自车到相机刚体转换(外参),相机到图像转换(内参),图像到像素有单位转换。3d向2d转换会有相应的畸变,平移等。重点:自车坐标系相机机体坐标系需要被重写的是:平面坐标系像素坐标系难点:要考虑图像畸变,去畸变和加畸变都是在像平面上去补偿二简介视觉系统一共有四个坐标系:像素平面坐标系(u,v)、图像坐标系(x,y)、相机坐标系()和世界坐标系()。每种坐标系之间均存在联系,

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

笔者的一些个人思考在自动驾驶领域,随着BEV-based子任务/端到端方案的发展,高质量的多视图训练数据和相应的仿真场景构建愈发重要。针对当下任务的痛点,“高质量”可以解耦成三个方面:不同维度上的长尾场景:如障碍物数据中近距离的车辆以及切车过程中精准的朝向角,以及车道线数据中不同曲率的弯道或较难采集的匝道/汇入/合流等场景。这些往往靠大量的数据采集和复杂的数据挖掘策略,成本高昂。3D真值-图像的高度一致:当下的BEV数据获取往往受到传感器安装/标定,高精地图以及重建算法本身的误差影响。这导致了我

突然发现了一篇19年的论文GSLAM:AGeneralSLAMFrameworkandBenchmark开源代码:https://github.com/zdzhaoyong/GSLAM直接上全文,感受这项工作的质量吧~1摘要SLAM技术最近取得了许多成功,并吸引了高科技公司的关注。然而,如何同一现有或新兴算法的界面,一级有效地进行关于速度、稳健性和可移植性的基准测试仍然是问题。本文,提出了一个名为GSLAM的新型SLAM平台,它不仅提供评估功能,还为研究人员提供了快速开发自己的SLAM系统的有用

请留意,这个方块人正在紧锁眉头,思考着面前几位“不速之客”的身份。原来她陷入了危险境地,意识到这一点后,她迅速展开脑力搜索,寻找解决问题的策略。最终,她决定先逃离现场,然后尽快寻求帮助,并立即采取行动。与此同时,对面的人也在进行着与她相同的思考……在《我的世界》中出现了这样一个场景,所有的角色都由人工智能控制。他们每个人都有着独特的身份设定,比如之前提到的女孩就是一个年仅17岁但聪明勇敢的快递员。他们拥有记忆和思考能力,在这个以《我的世界》为背景的小镇中像人类一样生活。驱动他们的,是一款全新的、

OpenAI发布的GPT-4o模型无疑是一个巨大的突破,特别是在其能够处理多种输入媒介(文本、音频、图片)并生成相应输出方面。这种能力使得人机交互更加自然和直观,极大地提升了AI的实用性和可用性。GPT-4o的几个关键亮点包括:高度可扩展性、多媒体输入输出、自然语言理解能力的进一步提升等等。1.跨媒介输入/输出:GPT-4o+能够接受文本、音频和图片的任意组合作为输入,并直接生成这些媒介的输出。这打破了传统AI模型仅处理单一输入类型的限制,使得人机交互更加灵活和多样化。这一创新有助于推动智能助手
