英伟达、Hugging Face和ServiceNow发布用于代码生成的新StarCoder2 LLM
这些模型目前有三种不同的大小,已经在600多种编程语言(包括低资源语言)上进行了培训,以帮助企业在其开发工作流中加速各种与代码相关的任务,它们是在开放的BigCode项目下开发的,该项目是ServiceNow和Huging Face联合发起的,以确保负责任地开发和使用大型代码语言模型,在开放负责任的AI许可证下,它们是免费提供的。
StarCoder2的推出证实了开放的科学合作和负责任的AI实践与道德数据供应链的结合可以带来巨大的力量。ServiceNow的StarCoder2开发团队负责人和BigCode的联合负责人Harm de Vries在一份声明中指出,新的开放访问模式不仅改进了之前的GenAI性能,也提升了开发人员的生产效率,让他们更容易获得代码生成AI的好处,从而使得任何规模的企业都能更轻松地实现其全部业务潜力。
StarCoder2:满足三种不同需求的三种模型
BigCode的最新产品不仅仅是StarCoder LLM的升级,它引入了三种不同规模的模型:3B、7B和15B,并且扩展了支持的编程语言达到了619种。新一代产品中,被称为Stack的模型训练数据量比之前增加了将近七倍。这意味着BigCode在不断进化,为开发者提供更加强大和全面的工具和资源,以帮助他们在各种编程任务中取得成功。这种创新精神和不断改进的态度使得BigCode成为开发者们信赖和依赖的首选平台,为他们提供了更广泛的学习和应用机会。BigCode的发展展示了对技术和编程领域的持续投入和关注,为整个行业带来了新的可能性和机遇。
BigCode社区采用了最新一代的培训技术,以确保模型能够理解和生成低资源编程语言,例如COBOL、数学和程序源代码。这种方法对于帮助用户更好地掌握多样化的编程语言和代码讨论至关重要。
30亿参数模型采用了ServiceNow的Fast LLM框架进行训练,而7B模型则是基于Hugging Face的Nantron框架开发的。这两种模型都旨在为文本到代码和文本到工作流生成提供高性能,同时又需要较少的计算资源。
同时,使用端到端的英伟达 Nemo云本地框架和英伟达 TensorRT-LLM软件对最大的150亿参数模型进行了训练和优化。
尽管这些机型在不同编码场景下的表现仍有待观察,但两家公司注意到最小的3B模型的性能与最初的15B StarCoder LLM相当。
根据他们的需求,企业团队可以使用这些模型中的任何一个,并根据不同用例的企业数据对其进行进一步的微调,这可以是任何特殊任务,从应用程序源代码生成、工作流生成和文本摘要到代码完成、高级代码摘要和代码片段检索。
两家公司强调,这些模型经过更广泛和深入的培训,能够提供更具上下文感知性和准确性的预测。这种高度训练的模型能够更好地理解存储库的背景信息。最终,这些努力为加速开发工作铺平了道路,使工程师和开发人员能够将更多精力集中在更为关键的任务上。
英伟达应用研究副总裁Jonathan Cohen在新闻声明中表示:“由于每个软件生态系统都有专有的编程语言,代码LLM可以推动每个行业在效率和创新方面的突破。”
“英伟达与ServiceNow和Huging Face的合作引入了安全、负责任的开发模式,并支持更广泛地接触负责任的GenAI,我们希望这将使全球社会受益”,他补充道。
如何开始使用StarCoder2?
如前所述,StarCoder2系列中的所有模型都是在Open Rail-M许可证下提供的,可以免版税访问和使用。支持代码可以在BigCode项目的GitHub库中找到。作为另一种选择,团队也可以下载并使用拥抱脸的所有三个模型。
也就是说,由英伟达培训的15B模型也将出现在英伟达 AI Foundation上,使开发人员能够直接从他们的浏览器或通过API端点进行试验。
虽然StarCoder不是AI驱动的代码生成领域的第一个进入者,但该项目的最新一代带来的广泛选择肯定允许企业在应用程序开发中利用LLMS,同时还可以节省计算。
该领域的其他知名参与者包括OpenAI和亚马逊,前者提供Codex,为GitHub联合试点服务提供支持,而后者提供CodeWhisper工具,还有来自Replit和Codenium的激烈竞争,Replit在Hugging Face上有几个小型AI编码模型,Codenium最近以5亿美元的估值获得了6500万美元的B轮融资。
以上是英伟达、Hugging Face和ServiceNow发布用于代码生成的新StarCoder2 LLM的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
