首页 > 科技周边 > 人工智能 > 复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
发布: 2024-03-05 09:19:17
转载
987 人浏览过

最近,OpenAI 的视频生成模型 Sora 爆火,生成式 AI 模型在多模态方面的能力再次引起广泛关注。

现实世界本质上是多模态的,生物体通过不同的渠道感知和交换信息,包括视觉、语言、声音和触觉。开发多模态系统的一个有望方向是增强 LLM 的多模态感知能力,主要涉及多模态编码器与语言模型的集成,从而使其能够跨各种模态处理信息,并利用 LLM 的文本处理能力来产生连贯的响应。

然而,这一策略仅仅适用于文本生成,并不涵盖多模态输出。一些开拓性的研究在语言模型中实现了多模态理解和生成,取得了重大进展,但这些模型仅限于单一的非文本模态,比如图像或音频。

为了解决上述问题,复旦大学邱锡鹏团队联合 Multimodal Art Projection(MAP)、上海人工智能实验室的研究者提出了一种名为 AnyGPT 的多模态语言模型,该模型能够以任意的模态组合来理解和推理各种模态的内容。具体来说,AnyGPT 可以理解文本、语音、图像、音乐等多种模态交织的指令,并能熟练地选择合适的多模态组合进行响应。

例如给出一段语音 prompt,AnyGPT 能够生成语音、图像、音乐形式的综合响应:

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

给出文本 + 图像形式的 prompt,AnyGPT 能够按照 prompt 要求生成音乐:

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持


  • 论文地址:https://arxiv.org/pdf/2402.12226.pdf
  • 项目主页:https://junzhan2000.github.io/AnyGPT.github.io/

方法简介

AnyGPT 利用离散表征来统一处理各种模态,包括语音、文本、图像和音乐。

为了完成任意模态到任意模态的生成任务,该研究提出了一个可以统一训练的综合框架。如下图 1 所示,该框架由三个主要组件组成,包括:

  • 多模态 tokenizer
  • 作为主干网络的多模态语言模型
  • 多模态 de-tokenizer

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

其中,tokenizer 将连续的非文本模态转换为离散的 token,随后将其排列成多模态交错序列。然后,语言模型使用下一个 token 预测训练目标进行训练。在推理过程中,多模态 token 被相关的 de-tokenizer 解码回其原始表征。为了丰富生成的质量,可以部署多模态增强模块来对生成的结果进行后处理,包括语音克隆或图像超分辨率等应用。

AnyGPT 可以稳定地训练,无需对当前的大型语言模型(LLM)架构或训练范式进行任何改变。相反,它完全依赖于数据级预处理,使得新模态无缝集成到 LLM 中,类似于添加新语言。

这项研究的一个关键挑战是缺乏多模态交错指令跟踪数据。为了完成多模态对齐预训练,研究团队利用生成模型合成了第一个大规模「任意对任意」多模态指令数据集 ——AnyInstruct-108k。它由 108k 多轮对话样本组成,这些对话错综复杂地交织着各种模态,从而使模型能够处理多模态输入和输出的任意组合。

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

这些数据通常需要大量比特才能准确表征,从而导致序列较长,这对语言模型的要求特别高,因为计算复杂度随着序列长度呈指数级增加。为了解决这个问题,该研究采用了两阶段的高保真生成框架,包括语义信息建模和感知信息建模。首先,语言模型的任务是生成在语义层面经过融合和对齐的内容。然后,非自回归模型在感知层面将多模态语义 token 转换为高保真多模态内容,在性能和效率之间取得平衡。

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

实验

实验结果表明,AnyGPT 能够完成任意模态对任意模态的对话任务,同时在所有模态中实现与专用模型相当的性能,证明离散表征可以有效且方便地统一语言模型中的多种模态。

该研究评估了预训练基础 AnyGPT 的基本功能,涵盖所有模态的多模态理解和生成任务。该评估旨在测试预训练过程中不同模态之间的一致性,具体来说是测试了每种模态的 text-to-X 和 X-to-text 任务,其中 X 分别是图像、音乐和语音。

为了模拟真实场景,所有评估均以零样本模式进行。这意味着 AnyGPT 在评估过程中不会对下游训练样本进行微调或预训练。这种具有挑战性的评估设置要求模型泛化到未知的测试分布。

评估结果表明,AnyGPT 作为一种通用的多模态语言模型,在各种多模态理解和生成任务上取得了令人称赞的性能。

图像

该研究评估了 AnyGPT 在图像描述任务上的图像理解能力,结果如表 2 所示。

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

文本到图像生成任务的结果如表 3 所示。

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持语音

该研究通过计算 LibriSpeech 数据集的测试子集上的词错误率 (WER) 来评估 AnyGPT 在自动语音识别 (ASR) 任务上的性能,并使用 Wav2vec 2.0 和 Whisper Large V2 作为基线,评估结果如表 5 所示。

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

音乐

该研究在 MusicCaps 基准上评估了 AnyGPT 在音乐理解和生成任务方面的表现,采用 CLAP_score 分数作为客观指标,衡量生成的音乐和文本描述之间的相似度,评估结果如表 6 所示。

复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持

感兴趣的读者可以阅读论文原文,了解更多研究内容。

以上是复旦等发布AnyGPT:任意模态输入输出,图像、音乐、文本、语音都支持的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:51cto.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
关于模型的问题
来自于 1970-01-01 08:00:00
0
0
0
模型不收敛是怎么回事?
来自于 1970-01-01 08:00:00
0
0
0
Laravel关联模型的问题
来自于 1970-01-01 08:00:00
0
0
0
Laravel - 将模型关系更新到另一个模型
来自于 1970-01-01 08:00:00
0
0
0
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板