目录
架构细节
通过 re-weighting 改进 Rectified Flow
扩展 Rectified Flow Transformer 模型
灵活的文本编码器
模型性能
首页 科技周边 人工智能 Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

Mar 06, 2024 pm 05:34 PM
ai 技术 论文

Stable Diffusion 3 的论文终于来了!

这个模型于两周前发布,采用了与 Sora 相同的 DiT(Diffusion Transformer)架构,一经发布就引起了不小的轰动。

与之前版本相比,Stable Diffusion 3 生成的图质量有了显着提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。

Stability AI 指出,Stable Diffusion 3 是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显着降低了使用AI大型模型的门槛。

在最新发布的论文中,Stability AI 表示,在基于人类偏好的评估中,Stable Diffusion 3 优于当前最先进的文本到图像生成系统,如 DALL・E 3、Midjourney v6 和 Ideogram v1。不久之后,他们将公开该研究的实验数据、代码和模型权重。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

在论文中,Stability AI 透露了关于 Stable Diffusion 3 的更多细节。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

  • 论文标题:Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
  • 论文链接:https://stabilityai-public-packages.s3.us-west-2.amazonaws .com/Stable+Diffusion+3+Paper.pdf

架构细节

对于文本到图像的生成,Stable Diffusion 3 模型必须同时考虑文本和图像两种模式。因此,论文作者称这种新架构为 MMDiT,意指其处理多种模态的能力。与之前版本的 Stable Diffusion 一样,作者使用预训练模型来推导合适的文本和图像表征。具体来说,他们使用了三种不同的文本嵌入模型 —— 两种 CLIP 模型和 T5—— 来编码文本表征,并使用改进的自编码模型来编码图像 token。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

Stable Diffusion 3 模型架构。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

改进的多模态扩散 transformer:MMDiT 块。

SD3 架构基于 Sora 核心研发成员 William Peebles 和纽约大学计算机科学助理教授谢赛宁合作提出的 DiT。由于文本嵌入和图像嵌入在概念上有很大不同,因此 SD3 的作者对两种模态使用两套不同的权重。如上图所示,这相当于为每种模态设置了两个独立的transformer,但将两种模态的序列结合起来进行注意力运算,从而使两种表征都能在各自的空间内工作,同时也将另一种表征考虑在内。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

在训练过程中测量视觉保真度和文本对齐度时,作者提出的 MMDiT 架构优于 UViT 和 DiT 等成熟的文本到图像骨干。

通过这种方法,信息可以在图像和文本 token 之间流动,从而提高模型的整体理解能力,并改善所生成输出的文字排版。正如论文中所讨论的那样,这种架构也很容易扩展到视频等多种模式。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

得益于 Stable Diffusion 3 改进的提示遵循能力,新模型有能力制作出聚焦于各种不同主题和质量的图像,同时还能高度灵活地处理图像本身的风格。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

通过 re-weighting 改进 Rectified Flow

Stable Diffusion 3 采用 Rectified Flow(RF)公式,在训练过程中,数据和噪声以线性轨迹相连。这使得推理路径更加平直,从而减少了采样步骤。此外,作者还在训练过程中引入了一种新的轨迹采样计划。他们假设,轨迹的中间部分会带来更具挑战性的预测任务,因此该计划给予轨迹中间部分更多权重。他们使用多种数据集、指标和采样器设置进行比较,并将自己提出的方法与 LDM、EDM 和 ADM 等 60 种其他扩散轨迹进行了测试。结果表明,虽然以前的 RF 公式在少步采样情况下性能有所提高,但随着步数的增加,其相对性能会下降。相比之下,作者提出的重新加权 RF 变体能持续提高性能。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

扩展 Rectified Flow Transformer 模型

作者利用重新加权的 Rectified Flow 公式和 MMDiT 骨干对文本到图像的合成进行了扩展(scaling)研究。他们训练的模型从带有 450M 个参数的 15 个块到带有 8B 个参数的 38 个块不等,并观察到验证损失随着模型大小和训练步骤的增加而平稳降低(上图的第一行)。为了检验这是否转化为对模型输出的有意义改进,作者还评估了自动图像对齐指标(GenEval)和人类偏好分数(ELO)(上图第二行)。结果表明,这些指标与验证损失之间存在很强的相关性,这表明后者可以很好地预测模型的整体性能。此外,scaling 趋势没有显示出饱和的迹象,这让作者对未来继续提高模型性能持乐观态度。

灵活的文本编码器

通过移除用于推理的内存密集型 4.7B 参数 T5 文本编码器,SD3 的内存需求可显著降低,而性能损失却很小。如图所示,移除该文本编码器不会影响视觉美感(不使用 T5 时的胜率为 50%),只会略微降低文本一致性(胜率为 46%)。不过,作者建议在生成书面文本时加入 T5,以充分发挥 SD3 的性能,因为他们观察到,如果不加入 T5,生成排版的性能下降幅度更大(胜率为 38%),如下图所示:

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

只有在呈现涉及许多细节或大量书面文本的非常复杂的提示时,移除 T5 进行推理才会导致性能显著下降。上图显示了每个示例的三个随机样本。

模型性能

作者将 Stable Diffusion 3 的输出图像与其他各种开源模型(包括 SDXL、SDXL Turbo、Stable Cascade、Playground v2.5 和 Pixart-α)以及闭源模型(如 DALL-E 3、Midjourney v6 和 Ideogram v1)进行了比较,以便根据人类反馈来评估性能。在这些测试中,人类评估员从每个模型中获得输出示例,并根据模型输出在多大程度上遵循所给提示的上下文(prompt following)、在多大程度上根据提示渲染文本(typography)以及哪幅图像具有更高的美学质量(visual aesthetics)来选择最佳结果。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

以 SD3 为基准,这个图表概述了它在基于人类对视觉美学、提示遵循和文字排版的评估中的胜率。

从测试结果来看,作者发现 Stable Diffusion 3 在上述所有方面都与当前最先进的文本到图像生成系统相当,甚至更胜一筹。

在消费级硬件上进行的早期未优化推理测试中,最大的 8B 参数 SD3 模型适合 RTX 4090 的 24GB VRAM,使用 50 个采样步骤生成分辨率为 1024x1024 的图像需要 34 秒。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

此外,在最初发布时,Stable Diffusion 3 将有多种变体,从 800m 到 8B 参数模型不等,以进一步消除硬件障碍。

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?

更多细节请参考原论文。

参考链接:https://stability.ai/news/stable-diffusion-3-research-paper

以上是Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Laravel的地理空间:互动图和大量数据的优化 Laravel的地理空间:互动图和大量数据的优化 Apr 08, 2025 pm 12:24 PM

利用地理空间技术高效处理700万条记录并创建交互式地图本文探讨如何使用Laravel和MySQL高效处理超过700万条记录,并将其转换为可交互的地图可视化。初始挑战项目需求:利用MySQL数据库中700万条记录,提取有价值的见解。许多人首先考虑编程语言,却忽略了数据库本身:它能否满足需求?是否需要数据迁移或结构调整?MySQL能否承受如此大的数据负载?初步分析:需要确定关键过滤器和属性。经过分析,发现仅少数属性与解决方案相关。我们验证了过滤器的可行性,并设置了一些限制来优化搜索。地图搜索基于城

mysql 无法启动怎么解决 mysql 无法启动怎么解决 Apr 08, 2025 pm 02:21 PM

MySQL启动失败的原因有多种,可以通过检查错误日志进行诊断。常见原因包括端口冲突(检查端口占用情况并修改配置)、权限问题(检查服务运行用户权限)、配置文件错误(检查参数设置)、数据目录损坏(恢复数据或重建表空间)、InnoDB表空间问题(检查ibdata1文件)、插件加载失败(检查错误日志)。解决问题时应根据错误日志进行分析,找到问题的根源,并养成定期备份数据的习惯,以预防和解决问题。

mysql安装后怎么使用 mysql安装后怎么使用 Apr 08, 2025 am 11:48 AM

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

了解 ACID 属性:可靠数据库的支柱 了解 ACID 属性:可靠数据库的支柱 Apr 08, 2025 pm 06:33 PM

数据库ACID属性详解ACID属性是确保数据库事务可靠性和一致性的一组规则。它们规定了数据库系统处理事务的方式,即使在系统崩溃、电源中断或多用户并发访问的情况下,也能保证数据的完整性和准确性。ACID属性概述原子性(Atomicity):事务被视为一个不可分割的单元。任何部分失败,整个事务回滚,数据库不保留任何更改。例如,银行转账,如果从一个账户扣款但未向另一个账户加款,则整个操作撤销。begintransaction;updateaccountssetbalance=balance-100wh

mySQL下载完安装不了 mySQL下载完安装不了 Apr 08, 2025 am 11:24 AM

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

偏远的高级后端工程师(平台)需要圈子 偏远的高级后端工程师(平台)需要圈子 Apr 08, 2025 pm 12:27 PM

远程高级后端工程师职位空缺公司:Circle地点:远程办公职位类型:全职薪资:$130,000-$140,000美元职位描述参与Circle移动应用和公共API相关功能的研究和开发,涵盖整个软件开发生命周期。主要职责独立完成基于RubyonRails的开发工作,并与React/Redux/Relay前端团队协作。为Web应用构建核心功能和改进,并在整个功能设计过程中与设计师和领导层紧密合作。推动积极的开发流程,并确定迭代速度的优先级。要求6年以上复杂Web应用后端

mysql 能返回 json 吗 mysql 能返回 json 吗 Apr 08, 2025 pm 03:09 PM

MySQL 可返回 JSON 数据。JSON_EXTRACT 函数可提取字段值。对于复杂查询,可考虑使用 WHERE 子句过滤 JSON 数据,但需注意其性能影响。MySQL 对 JSON 的支持在不断增强,建议关注最新版本及功能。

Bangla 部分模型检索中的 Laravel Eloquent ORM) Bangla 部分模型检索中的 Laravel Eloquent ORM) Apr 08, 2025 pm 02:06 PM

LaravelEloquent模型检索:轻松获取数据库数据EloquentORM提供了简洁易懂的方式来操作数据库。本文将详细介绍各种Eloquent模型检索技巧,助您高效地从数据库中获取数据。1.获取所有记录使用all()方法可以获取数据库表中的所有记录:useApp\Models\Post;$posts=Post::all();这将返回一个集合(Collection)。您可以使用foreach循环或其他集合方法访问数据:foreach($postsas$post){echo$post->

See all articles