一文总结扩散模型(Diffusion Model)在时间序列中的应用
扩散模型是目前生成式AI中的最核心模块,在Sora、DALL-E、Imagen等生成式AI大模型中都取得了广泛的应用。与此同时,扩散模型也被越来越多的应用到了时间序列中。这篇文章给大家介绍了扩散模型的基本思路,以及几篇扩散模型用于时间序列的典型工作,带你理解扩散模型在时间序列中的应用原理。
1.扩散模型建模思路
生成模型的核心是,能够从随机简单分布中采样一个点,并通过一系列变换将这个点映射到目标空间的图像或样本上。扩散模型的做法是,在采样的样本点上,不断的去噪声,经过多个去除噪声的步骤,生成最终的数据。这个过程很像雕塑的过程,最开始从高斯分布采样的噪声就是最开始的原材料,去噪声的过程就是不断在这个材料上凿掉多余部分的过程。
上面所说的就是逆向过程,即从一个噪声中逐渐去掉噪声,得到图像。这个过程是一个迭代的过程,要经历T次的去噪,一点点从原始采样点中把噪声去掉。在每个步骤中,输入上一个步骤生成的结果,并且需要预测噪声,再用输入减去噪声,得到当前时间步的输出。
这里就需要训练一个预测当前步骤噪声的模块(去噪模块),这个模块输入当前的步骤t,以及当前步骤的输入,预测噪声是什么。这个预测噪声的模块,是通过正向过程进行的,和VAE中的Encoder部分比较像。在正向过程中,输入一个图像,每个步骤采样一个噪声,将噪声加到原始图像上,得到生成的结果。然后再以生成的结果和当前步骤t的embedding为输入,预测生成的噪声,以此达到训练去噪模块的作用。
2.扩散模型在时间序列中的应用
TimeGrad是最早采用扩散模型进行时间序列预测的方法之一。与传统扩散模型不同的是,TimeGrad在基础扩散模型的基础上引入了一个去噪模块,并为每个时间步额外提供了一个隐藏状态。这个隐藏状态是通过RNN模型对历史序列和外部变量进行编码得到的,用于指导扩散模型生成序列。总体逻辑如下图所示。
在去噪模块的网络结构中,主要运用了卷积神经网络。输入信号分为两部分:第一部分是上一个步骤的输出序列,第二部分是RNN输出的隐藏状态,经过上采样后得到的结果。这两部分分别经过卷积处理后相加,用于噪声的预测。
这篇文章使用扩散模型建模时间序列填充任务,整体建模方式和TimeGrad比较像。如下图所示,最开始时间序列是有缺失值的,首先对其填充上噪声,然后使用扩散模型逐渐预测噪声实现去噪,经过多个步骤后最终得到填充结果。
整个模型的核心也是扩散模型训练去噪模块。核心是训练噪声预测网络,每个步骤输入当前的步骤embedding、历史的观测结果以及上一个时刻的输出,预测噪声结果。
网络结构上使用Transformer,包括时间维度上的Transformer和变量维度的Transformer两个部分。
本文提出的方法相比TimeGrad上升了一个层次,是通过扩散模型直接建模生成时间序列的函数本身。这里假设每一个观测点都是从一个函数中生成的,然后直接建模这个函数的分布,而不是建模时间序列中数据点的分布。因此,文中将扩散模型中添加的独立噪声改成随时间变化的噪声,并训练扩散模型中的去噪模块实现对函数的去噪。
这篇文章将扩散模型应用到ICU中的关键信号提取。文中的核心一方面是对于稀疏不规则的医疗时序数据的处理,使用value、feature、time三元组表示序列中的每个点,对确实值部分使用mask。另一方面是基于Transformer和扩散模型的预测方法。整体的扩散模型过程如图,跟图像的生成模型原理是类似的,根据历史的时间序列训练去噪模型,然后在前向传播中逐渐从初始噪声序列中减掉噪声。
具体的扩散模型中噪声预测的部分采用的是Transformer结构。每个时间点由mask以及三元组组成,输入到Transformer中,作为去噪模块预测噪声。详细结构包括3层Transformer,每个Transformer包括2层Encoder和2层Decoder网络,Decoder的输出使用残差网络连接,并输入到卷积Decoder生成噪声预测结果。
以上是一文总结扩散模型(Diffusion Model)在时间序列中的应用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
