LimSim++:多模态大模型在自动驾驶中的新舞台
论文名称:LimSim++: A Closed-Loop Platform for Deploying Multimodal LLMs in Autonomous Driving
项目主页:https://pjlab-adg.github.io/limsim_plus/
仿真器简介
随着多模态大语言模型((M)LLM)在人工智能领域掀起研究热潮,其在自动驾驶技术中的应用逐渐成为关注的焦点。这些模型通过强大的广义理解和逻辑推理能力,为构建安全可靠的自动驾驶系统提供了有力支持。虽然已有闭环仿真平台如HighwayEnv、CARLA和NuPlan等,能够验证LLM在自动驾驶中的表现,但用户通常需要自行适配这些平台,这不仅提高了使用门槛,也限制了LLM能力的深入挖掘。
为了克服这一挑战,上海人工智能实验室的智能交通平台组推出了**LimSim++**,这是一款专为(M)LLM设计的自动驾驶闭环仿真平台。LimSim++的推出,旨在为自动驾驶领域的研究者提供一个更加适宜的环境,以全面探索LLM在自动驾驶技术中的潜力。该平台能够提取并处理来自SUMO和CARLA等仿真环境的场景信息,将其转化为LLM所需的多种输入形式,包括图像信息、场景认知和任务描述。此外,LimSim++还具备运动原语转换功能,能根据LLM的决策快速生成合适的行驶轨迹,实现闭环仿真。更重要的是,LimSim++为LLM创造了一个持续学习的环境,通过评估决策结果并提供反馈,帮助LLM不断优化驾驶策略,提高Driver Agent的驾驶性能。
仿真器特点
LimSim++在自动驾驶仿真领域具有显著特点,为(M)LLM驱动的Driver Agent提供了理想的闭环仿真和持续学习环境。
- LimSim++支持多种驾驶场景的模拟,如十字路口、匝道和环岛等,确保Driver Agent能够在各种复杂路况下接受挑战。这种多样化的场景设置有助于LLM获取更丰富的驾驶经验,提高其在真实环境中的适应能力。
- LimSim++支持多种模态输入的大语言模型。LimSim++不仅提供基于规则的场景信息生成,同时可以与CARLA联调,能够提供丰富的视觉输入,满足(M)LLM在自动驾驶中的视觉感知需求。
- LimSim++注重持续学习能力。LimSim++集成了评估、反思和记忆等模块,帮助(M)LLM在仿真过程中不断积累经验,优化决策策略。
创建属于自己的Driver Agent
LimSim++为用户提供了丰富的接口,可以满足Driver Agent的定制需求,提高了LimSim++开发的灵活性,并且降低了使用门槛。
- Prompt构建
- LimSim++支持用户自定义prompt,从而改变输入给(M)LLM的文本信息,包括角色设置、任务要求、场景描述等信息。
- LimSim++提供了基于json格式的场景描述模板,支持用户零代码进行prompt的修改,无需考虑信息提取的具体实现。
- 决策评估模块
- LimSim++提供了对(M)LLM决策结果进行评估的baseline,用户可以通过改变权重参数来调节评价偏好。
- 框架的灵活性
- LimSim++支持用户为(M)LLM添加自定义的工具库,例如感知工具、数值处理工具等等。
快速上手
- Step 0:安装SUMO(Version≥v1.15.0, ubuntu)
sudo add-apt-repository ppa:sumo/stablesudo apt-get updatesudo apt-get install sumo sumo-tools sumo-doc
- Step 1:下载LimSim++源码压缩包,解压后切换到正确分支
git clone https://github.com/PJLab-ADG/LimSim.gitgit checkout -b LimSim_plus
- Step 2:安装依赖 (要求装有conda)
cd LimSimconda env create -f environment.yml
- Step 3: 运行仿真
- 单独运行仿真
python ExampleModel.py
- 使用LLM进行自动驾驶
export OPENAI_API_KEY='your openai key'python ExampleLLMAgentCloseLoop.py
- 使用VLM进行自动驾驶
# Terminal 1cd path-to-carla/./CarlaUE4.sh# Termnial 2cd path-to-carla/cd PythonAPI/util/python3 config.py --map Town06# Termnial 2export OPENAI_API_KEY='your openai key'cd path-to-LimSim++/python ExampleVLMAgentCloseLoop.py
更多内容请查看LimSim++的github:https://github.com/PJLab-ADG/LimSim/tree/LimSim_plus,如有其他疑问请在GitHub的Issues中提出或直接邮件联系我们!
欢迎学术界和工业界小伙伴共同开发LimSim++,共建开源生态!
以上是LimSim++:多模态大模型在自动驾驶中的新舞台的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

智能应用控制是Windows11中非常有用的工具,可帮助保护你的电脑免受可能损害数据的未经授权的应用(如勒索软件或间谍软件)的侵害。本文将解释什么是智能应用控制、它是如何工作的,以及如何在Windows11中打开或关闭它。什么是Windows11中的智能应用控制?智能应用控制(SAC)是Windows1122H2更新中引入的一项新安全功能。它与MicrosoftDefender或第三方防病毒软件一起运行,以阻止可能不必要的应用,这些应用可能会减慢设备速度、显示意外广告或执行其他意外操作。智能应用

如此强大的AI模仿能力,真的防不住,完全防不住。现在AI的发展已经达到了这种程度吗?你前脚让自己的五官乱飞,后脚,一模一样的表情就被复现出来,瞪眼、挑眉、嘟嘴,不管多么夸张的表情,都模仿的非常到位。加大难度,让眉毛挑的再高些,眼睛睁的再大些,甚至连嘴型都是歪的,虚拟人物头像也能完美复现表情。当你在左侧调整参数时,右侧的虚拟头像也会相应地改变动作给嘴巴、眼睛一个特写,模仿的不能说完全相同,只能说表情一模一样(最右边)。这项研究来自慕尼黑工业大学等机构,他们提出了GaussianAvatars,这种

本文经自动驾驶之心公众号授权转载,转载请联系出处。原标题:MotionLM:Multi-AgentMotionForecastingasLanguageModeling论文链接:https://arxiv.org/pdf/2309.16534.pdf作者单位:Waymo会议:ICCV2023论文思路:对于自动驾驶车辆安全规划来说,可靠地预测道路代理未来行为是至关重要的。本研究将连续轨迹表示为离散运动令牌序列,并将多智能体运动预测视为语言建模任务。我们提出的模型MotionLM具有以下几个优点:首

身高1.65米,体重55公斤,全身44个自由度,能够快速行走、敏捷避障、稳健上下坡、抗冲击干扰的人形机器人,现在可以带回家了!傅利叶智能的通用人形机器人GR-1已开启预售机器人大讲堂傅利叶智能FourierGR-1通用人形机器人现已开放预售。GR-1拥有高度仿生的躯干构型和拟人化的运动控制,全身44个自由度,具备行走、避障、越障、上下坡、抗干扰、适应不同路面等运动能力,是通用人工智能的理想载体。官网预售页面:www.fftai.cn/order#FourierGR-1#傅利叶智能需要进行改写的内

《ComputerWorld》杂志曾经写过一篇文章,说“编程到1960年就会消失”,因为IBM开发了一种新语言FORTRAN,这种新语言可以让工程师写出他们所需的数学公式,然后提交给计算机运行,所以编程就会终结。图片又过了几年,我们听到了一种新说法:任何业务人员都可以使用业务术语来描述自己的问题,告诉计算机要做什么,使用这种叫做COBOL的编程语言,公司不再需要程序员了。后来,据说IBM开发出了一门名为RPG的新编程语言,可以让员工填写表格并生成报告,因此大部分企业的编程需求都可以通过它来完成图

轨迹预测近两年风头正猛,但大都聚焦于车辆轨迹预测方向,自动驾驶之心今天就为大家分享顶会NeurIPS上关于行人轨迹预测的算法—SHENet,在受限场景中人类的移动模式通常在一定程度上符合有限的规律。基于这个假设,SHENet通过学习隐含的场景规律来预测一个人的未来轨迹。文章已经授权自动驾驶之心原创!笔者的个人理解由于人类运动的随机性和主观性,当前预测一个人的未来轨迹仍然是一个具有挑战性的问题。然而,由于场景限制(例如平面图、道路和障碍物)以及人与人或人与物体的交互性,在受限场景中人类的移动模式通

近日,华为宣布将于9月推出一款搭载玄玑感知系统的全新智能穿戴新品,预计为华为的最新智能手表。该新品将集成先进的情绪健康监测功能,玄玑感知系统以其六大特性——准确性、全面性、快速性、灵活性、开放性和延展性——为用户提供全方位的健康评估。系统采用超感知模组,优化了多通道光路架构技术,大幅提升了心率、血氧和呼吸率等基础指标的监测精度。此外,玄玑感知系统还拓展了基于心率数据的情绪状态研究,不仅限于生理指标,还能评估用户的情绪状态和压力水平,支持超过60项运动健康指标监测,涵盖心血管、呼吸、神经、内分泌、

01什么是滑板底盘所谓滑板式底盘,即将电池、电动传动系统、悬架、刹车等部件提前整合在底盘上,实现车身和底盘的分离,设计解耦。基于这类平台,车企可以大幅降低前期研发和测试成本,同时快速响应市场需求打造不同的车型。尤其是无人驾驶时代,车内的布局不再是以驾驶为中心,而是会注重空间属性,有了滑板式底盘,可以为上部车舱的开发提供更多的可能。如上图,当然我们看滑板底盘,不要上来就被「噢,就是非承载车身啊」的第一印象框住。当年没有电动车,所以没有几百公斤的电池包,没有能取消转向柱的线传转向系统,没有线传制动系
