巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数
传统的时空预测模型通常需要大量数据支持才能取得良好效果。
然而,由于不同城市发展水平的差异和数据收集政策的不一致,许多地区的时空数据(例如交通和人群流动数据)受到了限制。因此,在数据稀缺的情况下,模型的可迁移性变得尤为重要。
目前的研究主要依靠源城市的数据来训练模型,并将其应用于目标城市的数据,但这种方法通常需要复杂的匹配设计。如何实现源城市和目标城市之间更广泛的知识迁移仍然是一个具有挑战性的问题。
最近,预训练模型在自然语言处理和计算机视觉领域取得了重大进展。引入prompt(提示)技术缩小了微调和预训练之间的差距,使得先进的预训练模型能够更快速地适应新的任务。这种方法的优势在于减少了对繁琐微调的依赖,提高了模型的效率和灵活性。通过prompt技术,模型可以更好地理解用户的需求,并产生更准确的输出,从而为人们提供更好的体验和服务。这种创新性的方法正在推动人工智能技术的发展,为各行业带来了更多可能性和机遇。
图片
论文链接:https://openreview.net/forum?id=QyFm3D3Tzi
开源代码及数据:https://www.php.cn/link/6644cb08d30b2ca55c284344a9750c2e
最新发表在ICLR2024的清华大学电子工程系城市科学与计算研究中心的成果《Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation》引入了GPD(Generative Pre-Trained Diffusion)模型,成功实现了在数据稀疏场景下的时空学习。
这种方法利用生成神经网络的参数,将时空稀疏数据学习转化为扩散模型的生成式预训练问题。与传统方法不同,该方法不再需要提取可迁移特征或设计复杂的模式匹配策略,也无需为少样本场景学习一个良好的模型初始化。
相反,该方法通过在源城市的数据上进行预训练来学习有关神经网络参数优化的知识,然后根据提示生成适用于目标城市的神经网络模型。
这一方法的创新之处在于能够根据「prompt(提示)」生成定制的神经网络,有效地适应不同城市之间的数据分布和特征差异,实现巧妙的时空知识迁移。
该研究为解决城市计算中数据稀缺性问题提供了新的思路。该论文的数据和代码均已开源。
从数据分布到神经网络参数分布
图 1:数据模式层面知识迁移 vs. 神经网络层面知识迁移
如图1(a)所示,传统的知识迁移方法通常是在源城市的数据上训练模型,然后将其应用于目标城市。然而,不同城市之间的数据分布可能存在显著差异,这导致直接迁移源城市模型可能无法很好地适应目标城市的数据分布。
因此,我们需要摆脱对杂乱数据分布的依赖,寻求一种更本质、更可迁移的知识共享方式。与数据分布相比,神经网络参数的分布更具有“高阶”的特性。
图 1 展示了从数据模式层面到神经网络层面知识迁移的转变过程。通过在源城市的数据上训练神经网络,并将其转化为生成适应目标城市的神经网络参数的过程,可以更好地适应目标城市的数据分布和特征。
预训练+提示微调:实现时空少样本学习
图2 GPD模型概览
如图2所示,该研究提出的GPD是一种条件生成框架,旨在直接从源城市的模型参数中学习,并为目标城市生成新的模型参数,该方法包括三个关键阶段:
1. 神经网络准备阶段:首先,针对每个源城市区域,该研究训练单独的时空预测模型,并保存其优化后的网络参数。每个区域的模型参数都经过独立优化,没有参数共享,以确保模型能够最大程度地适应各自区域的特征。
2. 扩散模型预训练:该框架使用收集到的预训练模型参数作为训练数据,训练扩散模型来学习生成模型参数的过程。扩散模型通过逐步去噪来生成参数,这个过程类似于从随机初始化开始的参数优化过程,因此能够更好地适应目标城市的数据分布。
3. 神经网络参数生成:在预训练后,可以通过使用目标城市的区域提示来生成参数。这种方法利用提示促进了知识转移和精确参数匹配,充分利用了城市间区域之间的相似性。
值得注意的是,在预训练-提示微调的框架中,提示的选择具有很高的灵活性,只要能够捕捉特定区域的特征即可。例如可以利用各种静态特征,如人口、区域面积、功能和兴趣点(POI)的分布等来实现这一目的。
这项工作从空间和时间两个方面利用区域提示:空间提示来自于城市知识图谱[1,2]中节点表征,它仅利用区域邻接性和功能相似性等关系,这些关系在所有城市中都很容易获取;时间提示来自于自监督学习模型的编码器。更多关于提示设计的细节请参见原文。
此外,该研究还探索了不同的提示引入方法,实验验证了基于先验知识的提示引入具有最优性能:用空间提示引导建模空间关联的神经网络参数生成,用时间提示引导时序神经网络参数生成。
实验结果
团队在论文中详细描述了实验设置,以帮助其他研究者复现其结果。他们还提供了原论文和开源数据代码,我们在这里关注其实验结果。
为了评估所提框架的有效性,该研究在两类经典的时空预测任务上进行了实验:人群流动预测和交通速度预测,覆盖了多个城市的数据集。
图片
表1展示了在四个数据集上相对于最先进基线方法的比较结果。根据这些结果,可以得出以下观察:
1)GPD相对于基线模型表现出显著的性能优势,在不同数据场景下一致表现优越,这表明GPD实现了有效的神经网络参数层面的知识迁移。
2)GPD在长期预测场景中表现出色,这一显著趋势可以归因于该框架对于更本质知识的挖掘,有助于将长期时空模式知识迁移到目标城市。
图3 不同时空预测模型的性能对比
此外,该研究还验证了GPD框架对于不同时空预测模型适配的灵活性。除了经典的时空图方法STGCN外,该研究还引入了GWN和STID作为时空预测模型,并使用扩散模型生成其网络参数。
实验结果表明,框架的优越性不会受到模型选择的影响,因此可以适配各种先进的模型。
进一步地,该研究通过在两个合成数据集上操纵模式相似性进行案例分析。
图4展示了区域A和B具有高度相似的时间序列模式,而区域C展示了明显不同的模式。同时,图5显示节点A和B具有对称的空间位置。
因此,我们可以推断区域A和B具有非常相似的时空模式,而与C有着明显的差异。模型生成的神经网络参数分布结果显示,A和B的参数分布相似,而与C的参数分布有显著差异。这进一步验证了GPD框架在有效生成具有多样化时空模式的神经网络参数的能力。
图 4 不同区域的时间序列及神经网络参数分布可视化
图 5 仿真数据集区域空间连接关系
参考资料:
https://www.php.cn/link/6644cb08d30b2ca55c284344a9750c2e
[1] Liu, Yu, et al. "Urbankg: An urban knowledge graph system." ACM Transactions on Intelligent Systems and Technology 14.4 (2023): 1-25.
[2] Zhou, Zhilun, et al. "Hierarchical knowledge graph learning enabled socioeconomic indicator prediction in location-based social network." Proceedings of the ACM Web Conference 2023. 2023.
以上是巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对
