首页 科技周边 人工智能 保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

Mar 20, 2024 am 10:13 AM
深度学习 理论 ai+光学

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用
编辑 | X

在光复用中,通道之间的正交性扮演着至关重要的角色。这种正交性确保了不同通道之间的信号不会相互干扰,从而实现了高效的数据传输。光复用系统能够同时传输多个通道的数据,有效提高了光纤的利用率。然而,这种系统也不可避免地会施加复用容量的上限。

在此,广东工业大学通感融合光子技术教育部重点实验室开发一种基于深度神经网络的多模光纤(MMF)上的非正交光复用,称为散斑光场检索网络(Speckle light field retrieval network,SLRnet),它可以学习包含信息编码的多个非正交输入光场与其对应的单强度输出之间的复杂映射关系。

通过原理验证实验,SLRnet成功解决了MMF上非正交光复用的不适定问题。它能够利用单发散斑输出明确地检索由相同偏振、波长和空间位置介导的多个非正交输入信号,保真度高达98%。这项研究为实现高容量光复用利用非正交通道铺平了道路,是迈向这一目标的重要一步。

这项研究将推动光学和光子学领域的潜在应用,并为信息科学与技术等更广泛学科的探索提供新的启示。

相关研究以《Non-orthogonal optical multiplexing empowered by deep learning》为题,于 2024 年 2 月 21 日发表在《Nature Communications》上。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

论文链接:https://www.nature.com/articles/s41467-024-45845-4

光复用问题

复用(Multiplexing)是光通信的基石,其中复用通道之间的物理正交性是大规模编码信息传输的先决条件。

考虑到多个正交信号的解复用(Demultiplexing),传输矩阵方法(例如 MMF)甚至可以在强散射介质上解决这个问题。

最近,深度学习已广泛应用于光学和光子学领域,用于光学器件和计算光学的逆向设计。具体来说,深度神经网络已被用来提高多重散射介质上正交复用的性能。

然而,迄今为止,所有报道的复用场景都严格依赖于多路复用通道之间的物理正交性。目前还没有尝试利用深度学习的非线性建模能力来实现 MMF 上的非正交光复用。

不幸的是,即使在单模光纤中由相同偏振或波长介导的非正交信道的复用仍然非常具有挑战性,这是由于缺乏有效的解复用方法或数字信号处理负担过重。因此,开发一种新的方法来解码非正交输入通道中编码的信息对于最终的光复用至关重要。

基于深度神经网络的 MMF 上的非正交光复用

在此,研究人员证明了在 SLRnet 的支持下可以通过 MMF 实现初步的非正交光复用。

作为概念验证演示,可以利用非正交输入通道实现通过 MMF 的信息复用传输,包括一般自然场景图像、不相关的随机二进制数据和不属于同一类型训练数据集的图像,有利于实现光信息的非正交复用传输。

通过数据驱动技术在非正交输入通道和输出之间建立复杂的关系,训练有素的深度神经网络只需使用单次输出强度即可检索非正交通道的编码信息。即使是共享相同偏振、波长和输入空间区域的非正交复用通道也可以被有效地解码。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

图 1:MMF 上的非正交光复用示意图。(来源:论文)

神经网络架构

深度神经网络能够从 MMF 的单个散斑输出中检索非正交光复用信号。由任意偏振组合介导的多个幅度和相位编码信息在 MMF 中传播后可以被 SLRnet 有效地检索。

如图 2a 所示,即使是具有相同偏振、波长和输入空间区域的非正交输入通道的典型场景也可以被显式解码。这是通过深度神经网络实现的,其架构如图 2b 所示,它是根据 MMF 独特的多重散射过程的 Unet 的变体。它由全连接(FC)层和 ResUnet 组成。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

图 2:通过深度学习实现 MMF 上的非正交光复用。(来源:论文)

实验结果

首先考虑 MMF 长度为 1m 的情况。图 3a 展示了 SLRnet 训练过程中具有任意偏振态组合的两个复用光场通道的检索保真度的演变。总的来说,在幅度和相位维度上将有四个编码通道,根据偏振状态,它们可以是非正交的。检索到的保真度是通过皮尔逊相关系数(PCC)来衡量的。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

图 3:使用 SLRnet 的非正交复用性能。(来源:论文)

从图中可以看出,使用相同的 SLRnet 训练配置检索到的 PCC 在 100 个 epoch 后的演化大于 0.97。同时,十二个复用场景的检索保真度的演变基本相同,这展示了非正交复用对于任意偏振组合的出色稳健性。

此外,图 3b 提供了分别使用不同的偏振组合在每个幅度和相位复用通道中检索到的保真度。幅度和相位维度上的平均检索保真度几乎相同( ~ 0.98),这凸显了 SLRnet 对多个非正交输入通道中编码的信息进行解复用的能力。

为了对波前编码的检索信息进行 sensory 评估,四种偏振组合(0° 和 0°、0° 和 10°、0° 和 90° 以及 0° 和椭圆)的典型解复用结果如图 4 所示。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

图 4:1 m MMF 上的非正交复用结果。(来源:论文)

可以看出,使用相同偏振在输入波前的幅度和相位上复用的四个灰度图像可以利用单次散斑输出有效地解复用。在不同偏振组合下检索到的其他结果的保真度相似,这表明即使编码波前被 MMF 扰乱,SLRnet 也能够实现前所未有的非正交输入通道复用。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

图 5:50 m MMF 上的非正交复用结果。(来源:论文)

为了进一步巩固 SLRnet 在更现实的场景中的优越性,提出了在 50 m MMF 上使用相同偏振态的非正交光复用结果,如图 5 所示。从图 4 和图 5 可以看出,1 m MMF 的解复用结果比 50 m 情况要好,这是因为较长的 MMF 的散射特性更容易受到环境的影响。通过优化网络结构可以进一步提高解复用性能。研究表明,SLRnet 是 MMF 中复用非正交信道的有效手段。

保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用

图 6:一般自然场景图像和不属于 ImageNet 数据库的图像在 1 m MMF 上非正交复用的结果。(来源:论文)

最后,展示 SLRnet 对于不同图像集的通用性,研究表明 SLRnet 具有良好的泛化性。

尽管现阶段所提出的基于 MMF 的非正交光复用概念不能直接用于通常需要统一保真度的医疗诊断,但高精度的非相关二进制数字信息的非正交复用表明,通过 MMF 实现光信息的非正交复用传输向前迈进了一步。

该研究不仅可以为利用高吞吐量 MMF 进行通信和信息处理铺平道路,而且还可能为光学及其他领域的光复用提供范式转变,这可以大大提高光学系统的自由度和容量。

以上是保真度高达~98%,广工大「AI+光学」研究登Nature子刊,深度学习赋能非正交光复用的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 May 30, 2024 am 09:35 AM

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

PRO | 为什么基于 MoE 的大模型更值得关注? PRO | 为什么基于 MoE 的大模型更值得关注? Aug 07, 2024 pm 07:08 PM

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

See all articles