目录
概述
深度学习框架
模型推理Pipeline
模型的推理
Pipeline介绍
Pipeline的使用
Pipeline基本用法
中文分词
Python代码
PHP 代码
输出结果
输入多条样本
输出
批量推理
输入一个数据集
指定预处理、模型进行推理
创建模型对象进行推理
图像
人像抠图('portrait-matting')
输入图片
Python 代码
PHP 代码 tinywan-images.php
执行结果
输出图片
首页 科技周边 人工智能 TensorFlow深度学习框架模型推理Pipeline进行人像抠图推理

TensorFlow深度学习框架模型推理Pipeline进行人像抠图推理

Mar 26, 2024 pm 01:00 PM
深度学习 pipeline 二次开发 pip安装

概述

为了使ModelScope的用户能够快速、方便的使用平台提供的各类模型,提供了一套功能完备的Python library,其中包含了ModelScope官方模型的实现,以及使用这些模型进行推理,finetune等任务所需的数据预处理,后处理,效果评估等功能相关的代码,同时也提供了简单易用的API,以及丰富的使用样例。通过调用library,用户可以只写短短的几行代码,就可以完成模型的推理、训练和评估等任务,也可以在此基础上快速进行二次开发,实现自己的创新想法。

目前library提供的算法模型,涵盖了图像,自然语言处理,语音,多模态,科学5个主要的AI领域,数十个应用场景任务,具体任务可参考文档:任务的介绍。

深度学习框架

ModelScope Library目前已支持Pytorch和Tensorflow等深度学习框架,未来将不断更新和扩展更多框架,敬请期待!所有官方模型均可通过ModelScope Library进行模型推理,有些模型还能够使用该库进行训练和评估。如需获取完整的使用信息,请查看相应模型的模型卡片。

模型推理Pipeline

模型的推理

在深度学习中,推理是指模型对数据进行预测的过程。ModelScope执行推理时会利用pipeline来顺序执行必要的操作。一个典型的pipeline通常包括数据预处理、模型前向推理和数据后处理三个步骤。

Pipeline介绍

pipeline()方法是ModelScope框架中最基础的用户方法之一,可用于快速进行各种领域的模型推理。借助pipeline()方法,用户只需一行代码即可轻松完成对特定任务的模型推理。

pipeline()方法是ModelScope框架中最基础的用户方法之一,可用于快速进行各种领域的模型推理。借助pipeline()方法,用户只需一行代码即可轻松完成对特定任务的模型推理。

Pipeline的使用

本文将简要介绍如何使用pipeline方法加载模型进行推理。通过pipeline方法,用户可以方便地从模型仓库中根据任务类型和模型名称拉取所需模型进行推理。这一方法的主要优势在于简便易用,能够快速高效地进行模型推断。pipeline方法的便利之处在于它提供了一种直接的方式来获取和应用模型,无需用户深入了解模型的具体细节,从而降低了使用模型的门槛。通过pipeline方法,用户可以更加专注于解决问题和

  • 环境准备
  • 重要参数
  • Pipeline基本用法
  • 指定预处理、模型进行推理
  • 不同场景任务推理pipeline使用示例

Pipeline基本用法

中文分词

pipeline函数支持指定特定任务名称,加载任务默认模型,创建对应pipeline对象。

Python代码

from modelscope.pipelines import pipelineword_segmentation = pipeline('word-segmentation')input_str = '开源技术小栈作者是Tinywan,你知道不?'print(word_segmentation(input_str))
登录后复制

PHP 代码

<?php $operator = PyCore::import("operator");$builtins = PyCore::import("builtins");$pipeline = PyCore::import('modelscope.pipelines')->pipeline;$word_segmentation = $pipeline("word-segmentation");$input_str = "开源技术小栈作者是Tinywan,你知道不?";PyCore::print($word_segmentation($input_str));
登录后复制

在线转换工具:https://www.swoole.com/py2php/

输出结果

/usr/local/php-8.2.14/bin/php demo.php 2024-03-25 21:41:42,434 - modelscope - INFO - PyTorch version 2.2.1 Found.2024-03-25 21:41:42,434 - modelscope - INFO - Loading ast index from /home/www/.cache/modelscope/ast_indexer2024-03-25 21:41:42,577 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 f54e9d2dceb89a6c989540d66db83a65 and a total number of 972 components indexed2024-03-25 21:41:44,661 - modelscope - WARNING - Model revision not specified, use revision: v1.0.32024-03-25 21:41:44,879 - modelscope - INFO - initiate model from /home/www/.cache/modelscope/hub/damo/nlp_structbert_word-segmentation_chinese-base2024-03-25 21:41:44,879 - modelscope - INFO - initiate model from location /home/www/.cache/modelscope/hub/damo/nlp_structbert_word-segmentation_chinese-base.2024-03-25 21:41:44,880 - modelscope - INFO - initialize model from /home/www/.cache/modelscope/hub/damo/nlp_structbert_word-segmentation_chinese-baseYou are using a model of type bert to instantiate a model of type structbert. This is not supported for all configurations of models and can yield errors.2024-03-25 21:41:48,633 - modelscope - WARNING - No preprocessor field found in cfg.2024-03-25 21:41:48,633 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.2024-03-25 21:41:48,633 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': '/home/www/.cache/modelscope/hub/damo/nlp_structbert_word-segmentation_chinese-base'}. trying to build by task and model information.2024-03-25 21:41:48,639 - modelscope - INFO - cuda is not available, using cpu instead.2024-03-25 21:41:48,640 - modelscope - WARNING - No preprocessor field found in cfg.2024-03-25 21:41:48,640 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.2024-03-25 21:41:48,640 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': '/home/www/.cache/modelscope/hub/damo/nlp_structbert_word-segmentation_chinese-base', 'sequence_length': 512}. trying to build by task and model information./home/www/anaconda3/envs/tinywan-modelscope/lib/python3.10/site-packages/transformers/modeling_utils.py:962: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.warnings.warn({'output': ['开源', '技术', '小', '栈', '作者', '是', 'Tinywan', ',', '你', '知道', '不', '?']}
登录后复制

输入多条样本

pipeline对象也支持传入多个样本列表输入,返回对应输出列表,每个元素对应输入样本的返回结果。多条文本的推理方式是输入data在pipeline内部用迭代器单条处理后append到同一个返回List中。

Python代码

from modelscope.pipelines import pipelineword_segmentation = pipeline('word-segmentation')inputs =['开源技术小栈作者是Tinywan,你知道不?','webman这个框架不错,建议你看看']print(word_segmentation(inputs))
登录后复制

PHP 代码

<?php $operator = PyCore::import("operator");$builtins = PyCore::import("builtins");$pipeline = PyCore::import('modelscope.pipelines')->pipeline;$word_segmentation = $pipeline("word-segmentation");$inputs = new PyList(["开源技术小栈作者是Tinywan,你知道不?", "webman这个框架不错,建议你看看"]);PyCore::print($word_segmentation($inputs));
登录后复制

输出

[{'output': ['开源', '技术', '小', '栈', '作者', '是', 'Tinywan', ',', '你', '知道', '不', '?']},{'output': ['webman', '这个', '框架', '不错', ',', '建议', '你', '看看']}]
登录后复制
登录后复制

批量推理

pipeline对于批量推理的支持类似于上面的“输入多条文本”,区别在于会在用户指定的batch_size尺度上,在模型forward过程实现批量前向推理。

inputs =['今天天气不错,适合出去游玩','这本书很好,建议你看看']# 指定batch_size参数来支持批量推理print(word_segmentation(inputs, batch_size=2))# 输出[{'output': ['今天', '天气', '不错', ',', '适合', '出去', '游玩']}, {'output': ['这', '本', '书', '很', '好', ',', '建议', '你', '看看']}]
登录后复制

输入一个数据集

from modelscope.msdatasets import MsDatasetfrom modelscope.pipelines import pipelineinputs = ['今天天气不错,适合出去游玩', '这本书很好,建议你看看']dataset = MsDataset.load(inputs, target='sentence')word_segmentation = pipeline('word-segmentation')outputs = word_segmentation(dataset)for o in outputs:print(o)# 输出{'output': ['今天', '天气', '不错', ',', '适合', '出去', '游玩']}{'output': ['这', '本', '书', '很', '好', ',', '建议', '你', '看看']}
登录后复制

指定预处理、模型进行推理

pipeline函数支持传入实例化的预处理对象、模型对象,从而支持用户在推理过程中定制化预处理、模型。

创建模型对象进行推理

Python代码

from modelscope.models import Modelfrom modelscope.pipelines import pipelinemodel = Model.from_pretrained('damo/nlp_structbert_word-segmentation_chinese-base')word_segmentation = pipeline('word-segmentation', model=model)inputs =['开源技术小栈作者是Tinywan,你知道不?','webman这个框架不错,建议你看看']print(word_segmentation(inputs))
登录后复制

PHP 代码

<?php $operator = PyCore::import("operator");$builtins = PyCore::import("builtins");$Model = PyCore::import('modelscope.models')->Model;$pipeline = PyCore::import('modelscope.pipelines')->pipeline;$model = $Model->from_pretrained("damo/nlp_structbert_word-segmentation_chinese-base");$word_segmentation = $pipeline("word-segmentation", model: $model);$inputs = new PyList(["开源技术小栈作者是Tinywan,你知道不?", "webman这个框架不错,建议你看看"]);PyCore::print($word_segmentation($inputs));
登录后复制

输出

[{'output': ['开源', '技术', '小', '栈', '作者', '是', 'Tinywan', ',', '你', '知道', '不', '?']},{'output': ['webman', '这个', '框架', '不错', ',', '建议', '你', '看看']}]
登录后复制
登录后复制

创建预处理器和模型对象进行推理

from modelscope.models import Modelfrom modelscope.pipelines import pipelinefrom modelscope.preprocessors import Preprocessor, TokenClassificationTransformersPreprocessormodel = Model.from_pretrained('damo/nlp_structbert_word-segmentation_chinese-base')tokenizer = Preprocessor.from_pretrained(model.model_dir)# Or call the constructor directly: # tokenizer = TokenClassificationTransformersPreprocessor(model.model_dir)word_segmentation = pipeline('word-segmentation', model=model, preprocessor=tokenizer)inputs =['开源技术小栈作者是Tinywan,你知道不?','webman这个框架不错,建议你看看']print(word_segmentation(inputs))[{'output': ['开源', '技术', '小', '栈', '作者', '是', 'Tinywan', ',', '你', '知道', '不', '?']},{'output': ['webman', '这个', '框架', '不错', ',', '建议', '你', '看看']}]
登录后复制

图像

注意:

  1. 确保你已经安装了OpenCV库。如果没有安装,你可以通过pip安装
pip install opencv-python
登录后复制

没有安装会提示:PHP Fatal error: Uncaught PyError: No module named 'cv2' in /home/www/build/ai/demo3.php:4

  1. 确保你已经安装深度学习框架包TensorFlow库

否则提示modelscope.pipelines.cv.image_matting_pipeline requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the installation page: https://www.tensorflow.org/install and follow the ones that match your environment.。

报错信息表明,你正在尝试使用一个名为 modelscope.pipelines.cv.image_matting_pipeline 的模块,该模块依赖于 TensorFlow 库。然而,该模块无法正常工作,因为缺少必要的 TensorFlow 依赖。

可以使用以下命令安装最新版本的 TensorFlow

pip install tensorflow
登录后复制

TensorFlow深度学习框架模型推理Pipeline进行人像抠图推理图片

人像抠图('portrait-matting')

输入图片

TensorFlow深度学习框架模型推理Pipeline进行人像抠图推理图片

Python 代码

import cv2from modelscope.pipelines import pipelineportrait_matting = pipeline('portrait-matting')result = portrait_matting('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_matting.png')cv2.imwrite('result.png', result['output_img'])
登录后复制

PHP 代码 tinywan-images.php

<?php $operator = PyCore::import("operator");$builtins = PyCore::import("builtins");$cv2 = PyCore::import('cv2');$pipeline = PyCore::import('modelscope.pipelines')->pipeline;$portrait_matting = $pipeline("portrait-matting");$result = $portrait_matting("https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_matting.png");$cv2->imwrite("tinywan_result.png", $result->__getitem__("output_img"));
登录后复制

加载本地文件图片$result = $portrait_matting("./tinywan.png");

执行结果

/usr/local/php-8.2.14/bin/php tinywan-images.php 2024-03-25 22:17:25,630 - modelscope - INFO - PyTorch version 2.2.1 Found.2024-03-25 22:17:25,631 - modelscope - INFO - TensorFlow version 2.16.1 Found.2024-03-25 22:17:25,631 - modelscope - INFO - Loading ast index from /home/www/.cache/modelscope/ast_indexer2024-03-25 22:17:25,668 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 f54e9d2dceb89a6c989540d66db83a65 and a total number of 972 components indexed2024-03-25 22:17:26,990 - modelscope - WARNING - Model revision not specified, use revision: v1.0.02024-03-25 22:17:27.623085: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.2024-03-25 22:17:27.678592: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.2024-03-25 22:17:28.551510: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT2024-03-25 22:17:29,206 - modelscope - INFO - initiate model from /home/www/.cache/modelscope/hub/damo/cv_unet_image-matting2024-03-25 22:17:29,206 - modelscope - INFO - initiate model from location /home/www/.cache/modelscope/hub/damo/cv_unet_image-matting.2024-03-25 22:17:29,209 - modelscope - WARNING - No preprocessor field found in cfg.2024-03-25 22:17:29,210 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.2024-03-25 22:17:29,210 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': '/home/www/.cache/modelscope/hub/damo/cv_unet_image-matting'}. trying to build by task and model information.2024-03-25 22:17:29,210 - modelscope - WARNING - Find task: portrait-matting, model type: None. Insufficient information to build preprocessor, skip building preprocessorWARNING:tensorflow:From /home/www/anaconda3/envs/tinywan-modelscope/lib/python3.10/site-packages/modelscope/utils/device.py:60: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.Instructions for updating:Use `tf.config.list_physical_devices('GPU')` instead.2024-03-25 22:17:29,213 - modelscope - INFO - loading model from /home/www/.cache/modelscope/hub/damo/cv_unet_image-matting/tf_graph.pbWARNING:tensorflow:From /home/www/anaconda3/envs/tinywan-modelscope/lib/python3.10/site-packages/modelscope/pipelines/cv/image_matting_pipeline.py:45: FastGFile.__init__ (from tensorflow.python.platform.gfile) is deprecated and will be removed in a future version.Instructions for updating:Use tf.gfile.GFile.2024-03-25 22:17:29,745 - modelscope - INFO - load model done
登录后复制

输出图片

TensorFlow深度学习框架模型推理Pipeline进行人像抠图推理图片

以上是TensorFlow深度学习框架模型推理Pipeline进行人像抠图推理的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

解决常见的pandas安装问题:安装错误的解读和解决方法 解决常见的pandas安装问题:安装错误的解读和解决方法 Feb 19, 2024 am 09:19 AM

pandas安装教程:解析常见安装错误及其解决方法,需要具体代码示例引言:Pandas是一个强大的数据分析工具,广泛应用于数据清洗、数据处理和数据可视化等方面,因此在数据科学领域备受推崇。然而,由于环境配置和依赖问题,安装pandas可能会遇到一些困难和错误。本文将为大家提供一份pandas安装教程,并解析一些常见的安装错误及其解决方法。一、安装pandas

超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 超越ORB-SLAM3!SL-SLAM:低光、严重抖动和弱纹理场景全搞定 May 30, 2024 am 09:35 AM

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

高效安装:快速安装pandas库的技巧和技巧 高效安装:快速安装pandas库的技巧和技巧 Feb 21, 2024 am 09:45 AM

高效安装:快速安装pandas库的技巧和技巧,需要具体代码示例概述:Pandas是一个功能强大的数据处理和分析工具,非常受Python开发人员的欢迎。然而,安装pandas库有时可能会遇到一些挑战,尤其是在网络条件较差的情况下。本文将介绍一些技巧和技巧,帮助您快速安装pandas库,并提供具体的代码示例。使用pip安装:pip是Python的官方软件包管理工

一文搞懂:AI、机器学习与深度学习的联系与区别 一文搞懂:AI、机器学习与深度学习的联系与区别 Mar 02, 2024 am 11:19 AM

在当今科技日新月异的浪潮中,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)与深度学习(DeepLearning,DL)如同璀璨星辰,引领着信息技术的新浪潮。这三个词汇频繁出现在各种前沿讨论和实际应用中,但对于许多初涉此领域的探索者来说,它们的具体含义及相互之间的内在联系可能仍笼罩着一层神秘面纱。那让我们先来看看这张图。可以看出,深度学习、机器学习和人工智能之间存在着紧密的关联和递进关系。深度学习是机器学习的一个特定领域,而机器学习

超强!深度学习Top10算法! 超强!深度学习Top10算法! Mar 15, 2024 pm 03:46 PM

自2006年深度学习概念被提出以来,20年快过去了,深度学习作为人工智能领域的一场革命,已经催生了许多具有影响力的算法。那么,你所认为深度学习的top10算法有哪些呢?以下是我心目中深度学习的顶尖算法,它们在创新性、应用价值和影响力方面都占据重要地位。1、深度神经网络(DNN)背景:深度神经网络(DNN)也叫多层感知机,是最普遍的深度学习算法,发明之初由于算力瓶颈而饱受质疑,直到近些年算力、数据的爆发才迎来突破。DNN是一种神经网络模型,它包含多个隐藏层。在该模型中,每一层将输入传递给下一层,并

Numpy安装攻略:一文解决安装难题 Numpy安装攻略:一文解决安装难题 Feb 21, 2024 pm 08:15 PM

Numpy安装攻略:一文解决安装难题,需要具体代码示例引言:Numpy是Python中一款强大的科学计算库,它提供了高效的多维数组对象和对数组数据进行操作的工具。但是,对于初学者来说,安装Numpy可能会带来一些困扰。本文将为大家提供一份Numpy安装攻略,以帮助大家快速解决安装难题。一、安装Python环境:在安装Numpy之前,首先需要确保已经安装了Py

AlphaFold 3 重磅问世,全面预测蛋白质与所有生命分子相互作用及结构,准确性远超以往水平 AlphaFold 3 重磅问世,全面预测蛋白质与所有生命分子相互作用及结构,准确性远超以往水平 Jul 16, 2024 am 12:08 AM

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」 。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。 AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显着提高。这表明,在单个统一的深度学习框架内,可以实现

百度智能云千帆大模型平台再升级:5款大模型、55个工具组件上新! 百度智能云千帆大模型平台再升级:5款大模型、55个工具组件上新! Mar 22, 2024 am 08:10 AM

服务8万企业用户,累计帮助用户精调1.3万个大模型,帮助用户开发出16万个大模型应用,自2023年12月以来百度智能云千帆大模型平台API日调用量环比增长97%...从一年前国内大模型平台的“开路先锋”到如今的大模型“超级工厂”,百度智能云千帆大模型平台在国内大模型市场牢牢占据着领先身位,但奔跑的脚步却并未停歇。3月21日,百度智能云在北京首钢园召开千帆产品发布会,百度智能云在大会期间宣布:1、携手北京市石景山区,共建全国首个百度智能云千帆大模型产业创新基地,助推区域产业腾飞;2、满足企业“效价

See all articles