LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」
在计算机科学领域,图形结构由节点(代表实体)和边(表示实体之间的关系)构成。
图无处不在。
互联网可以被视为一个庞大的网络,搜索引擎利用图形化的方式来组织和展示信息。
LLMs主要在常规文本上训练,因此将图转化为LLMs可理解的文本是一项具有挑战性的任务,因为图结构与文本有着根本的不同。
在ICLR 2024上,一支来自谷歌的团队探索了如何将图形数据转换为适合LLMs理解的形式。
论文地址:https://openreview.net/pdf?id=IuXR1CCrSi
使用两种不同的方法将图形编码为文本,并将文本和问题反馈给LLM的过程
他们还开发了一个名为GraphQA的基准,用于探究解决不同图推理问题的方法,并展示了如何以一种有利于LLM解决图形相关问题的方式来表达这些问题。
使用正确的方法,使得LLMs在图形任务上最高得以提升60%的性能。
GraphOA:一场对LLMs的「考试」
首先,谷歌团队设计了GraphQA基准测试,它可以被看作是一门考试,旨在评估LLM针对特定于图形问题的能力。
GraphOA通过使用多种类型的图表,确保广度和连接数量的多样性,以寻找LLMs在处理图形时可能存在的偏差情况,并使整个过程更接近LLMs在实际应用中可能遇到的情况。
使用GraphIQA对LLMs进行推理的框架
虽然任务很简单,比如检查边是否存在、计算节点或者边的数量等等,但这些任务都需要LLMs理解节点和边之间的关系,对于更复杂的图形推理至关重要。
同时,团队还探索了如何将图转换为LLMs可以处理的文本,比如解决了如下两个关键问题:
节点编码:我们如何表示单个节点?节点可以包括简单整数、常用名称(人名、字符)和字母。
边缘编码:我们如何描述节点之间的关系?方法可以包括括号符号、短语(如「是朋友」)和符号表示(如箭头)。
最终,研究人员通过系统地结合各种节点和边的编码方式,产生了像下图中展示的那些函数。
图形编码函数的例子
LLMs表现怎么样呢?
研究团队在GraphOA上进行了三个关键实验:
- 测试LLMs处理图形任务的能力
- 测试LLMs的大小对性能的影响
- 测试不同图形形状对性能的影响
在第一个实验中,LLMs表现平平,在大多数基本任务上,LLMs的表现并不比随机猜测好多少。
但编码方式显著影响结果,如下图所示,在大多数情况下,「incident」编码在大多数任务中表现出色。选择合适的编码函数可以极大的提高任务的准确度。
基于不同任务准确度的各种图编码器函数的比较
在第二个测试中,研究人员在不同大小的模型上测试了相同的图形任务。
就结论而言,在图形推理任务中,规模更大的模型表现更好,
然而有趣的是,在「边存在性」任务(确定图中两个节点是否相连)中,规模并不像其他任务那么重要。
即使是最大的LLM在循环检查问题上(确定图中是否存在循环)也无法始终击败简单的基线解决方案。这表明LLMs在某些图任务上仍有改进的空间。
模型容量对PaLM 2-XXS、XS、S和L的图推理任务的影响
在第三个测试中,对于图形结构是否会影响LMMs解决问题的能力,研究人员通过GraphOA生成不同结构的图形进行分析。
GraphQA不同图形生成器生成的图形示例。ER、BA、SBM和SFN分别是Erdős-Rényi、Barabási-Albert、随机块模型和无标度网络。
结果得出,图的结构对LLMs的性能有很大影响。
例如,在一个询问循环是否存在的任务中,LLMs在紧密相连的图形中表现出色(这里循环很常见),但在路径图中表现不佳(循环从不发生)。
但同时提供一些混合样本有助于LLMs适应,比如在循环检测任务中,研究人员在提示中添加了一些包含循环和一些不包含循环的示例作为少样本学习的例子,通过这种方式提高了LLMs的性能。
在不同的图任务上比较不同的图生成器。主要观察结果是,图结构对LLM的性能有显著影响。ER、BA、SBM和SFN分别指的是Erdős-Rényi、Barabási-Albert、随机块模型和无标度网络。
这仅仅是让LLMs理解图的开始
在论文中,谷歌团队初步探索了如何将图形最佳地表示为文本,以便LLMs能理解他们。
在正确编码技术的帮助下,显著提高了LLMs在图形问题上的准确性(从大约5%到超过60%的改进)。
同时也确定了三个主要的影响因子,分别为图形转换为文本的编码方式、不同图形的任务类型、以及图形的疏密结构。
这仅仅是让LLMs理解图的开始。在新基准测试GraphQA的帮助下,期待进一步研究,探索LLMs的更多可能性。
以上是LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
