DifFlow3D:场景流估计新SOTA,扩散模型又下一城!
原标题:DifFlow3D: Toward Robust Uncertainty-Aware Scene Flow Estimation with Iterative Diffusion-Based Refinement
论文链接:https://arxiv.org/pdf/2311.17456.pdf
代码链接:https://github.com/IRMVLab/DifFlow3D
作者单位:上海交通大学 剑桥大学 浙江大学 鉴智机器人
论文思路:
场景流估计旨在预测动态场景中每个点的3D位移变化,是计算机视觉领域的一个基础任务。然而,以往的工作常常受到局部约束搜索范围引起的不可靠相关性的困扰,并且在从粗到细的结构中积累不准确性。为了缓解这些问题,本文提出了一种新颖的不确定性感知场景流估计网络(DifFlow3D),该网络采用了扩散概率模型。设计了迭代扩散式细化(Iterative diffusion-based refinement)来增强相关性的鲁棒性,并对困难情况(例如动态、噪声输入、重复模式等)具有较强的适应性。为了限制生成的多样性,本文的扩散模型中利用了三个关键的与流相关的特征作为条件。此外,本文还在扩散中开发了一个不确定性估计模块,以评估估计场景流的可靠性。本文的 DifFlow3D 在 FlyingThings3D 和 KITTI 2015 数据集上分别实现了6.7%和19.1%的三维端点误差(EPE3D)降低,并在KITTI数据集上实现了前所未有的毫米级精度(EPE3D为0.0089米)。另外,本文的基于扩散的细化范式可以作为一个即插即用的模块,轻松集成到现有的场景流网络中,显著提高它们的估计精度。
主要贡献:
为了实现稳健的场景流估计,本研究提出了一种全新的即插即用型基于扩散的细化流程。据我们所知,这是首次在场景流任务中采用扩散概率模型。
作者结合了粗流嵌入、几何编码和跨帧成本体积等技术,设计了一种有效的条件引导方法,用于控制生成结果的多样性。
为了评估本文中流的可靠性并识别不准确的点匹配,作者还在扩散模型中引入了每个点的不确定性估计。
研究结果表明,本文提出的方法在FlyingThings3D和KITTI数据集上表现优异,胜过其他现有方法。特别是,DifFlow3D在KITTI数据集上实现了毫米级的端点误差(EPE3D),这是首次。相较于以往的研究,本文的方法在处理具有挑战性的情况时表现更为鲁棒,如噪声输入和动态变化。
网络设计:
场景流作为计算机视觉中的一项基础任务,指的是从连续的图像或点云中估计出的三维运动场。它为动态场景的低层次感知提供了信息,并且有着各种下游应用,例如自动驾驶[21]、姿态估计[9]和运动分割[1]。早期的工作集中在使用立体[12]或RGB-D图像[10]作为输入。随着3D传感器,例如激光雷达的日益普及,近期的工作通常直接以点云作为输入。
作为开创性的工作,FlowNet3D[16]使用 PointNet [25] 提取层次化特征,然后迭代回归场景流。PointPWC[42] 通过金字塔、变形和成本体积结构[31]进一步改进了它。HALFlow[35] 跟随它们,并引入了注意力机制以获得更好的流嵌入。然而,这些基于回归的工作通常遭受不可靠的相关性和局部最优问题[17]。原因主要有两个方面:(1)在他们的网络中,使用K最近邻(KNN)来搜索点对应关系,这并不能考虑到正确但距离较远的点对,也存在匹配噪声[7]。(2)另一个潜在问题来自于以往工作[16, 35, 36, 42]中广泛使用的粗到细结构。基本上,最初的流在最粗糙的层上估计,然后在更高分辨率中迭代细化。然而,流细化的性能高度依赖于初始粗流的可靠性,因为后续的细化通常受限于初始化周围的小的空间范围内。
为了解决不可靠性的问题,3DFlow[36] 设计了一个 all-to-all 的点收集模块,并加入了反向验证。类似地,Bi-PointFlowNet[4] 及其扩展MSBRN[5] 提出了一个双向网络,具有前向-后向相关性。IHNet[38] 利用一个带有高分辨率引导和重采样方案的循环网络。然而,这些网络大多因其双向关联或循环迭代而在计算成本上遇到了困难。本文发现扩散模型也可以增强相关性的可靠性和对匹配噪声的韧性,这得益于其去噪本质(如图1所示)。受到[30]中的发现的启发,即注入随机噪声有助于跳出局部最优,本文用概率扩散模型重新构建了确定性流回归任务(deterministic flow regression task),如图2所示。此外,本文的方法可以作为一个即插即用的模块服务于先前的场景流网络,这种方法更为通用,并且几乎不增加计算成本(第4.5节)。
然而,在本文的任务中利用生成模型是相当具有挑战性的,因为扩散模型固有的生成多样性。与需要多样化输出样本的点云生成任务不同,场景流预测是一个确定性任务,它计算精确的每点运动向量。为了解决这个问题,本文利用强条件信息来限制多样性,并有效控制生成的流。具体来说,首先初始化一个粗糙的稀疏场景流,然后通过扩散迭代生成流残差(flow residuals)。在每个基于扩散的细化层中,本文利用粗流嵌入、成本体积和几何编码作为条件。在这种情况下,扩散被应用于实际学习从条件输入到流残差的概率映射。
此外,先前的工作很少探索场景流估计的置信度和可靠性。然而,如图1所示,在噪声、动态变化、小物体和重复模式的情况下,密集流匹配容易出错。因此,了解每个估计的点对应关系是否可靠是非常重要的。受到最近在光流任务中不确定性估计成功的启发[33],本文在扩散模型中提出了逐点不确定性,以评估本文的场景流估计的可靠性。
图3。DifFlow3D 的总体结构。本文首先在 bottom layer 初始化一个粗糙的稀疏场景流。随后,将迭代扩散式细化层与流相关的条件信号结合使用,以恢复更密集的流残差。为了评估本文估计的流的可靠性,还将与场景流一起联合预测每个点的不确定性。
图2。本文用于场景流估计的扩散过程示意图。
图4。不确定性的可视化。在训练过程中,本文设计的不确定性区间逐渐缩小,这促使预测的流向真实值靠拢。
实验结果:
图1。在具有挑战性的情况下的比较。DifFlow3D 使用扩散模型预测具有不确定性感知的场景流,该模型对以下情况具有更强的鲁棒性:(a)动态变化,(b)噪声干扰的输入,(c)小物体,以及(d)重复模式。
图 5. 未使用或使用基于扩散的场景流细化 (DSFR) 的可视化结果。
图6。在输入点上添加随机高斯噪声。
图7。不确定性在训练过程中的作用。本文分别在不同的训练阶段(第10轮和第100轮)可视化了不确定性区间。
总结:
本文创新性地提出了一个基于扩散的场景流细化网络,该网络能够感知估计的不确定性。本文采用多尺度扩散细化来生成细粒度的密集流残差。为了提高估计的鲁棒性,本文还引入了与场景流一起联合生成的逐点不确定性。广泛的实验表明了本文的 DifFlow3D 的优越性和泛化能力。值得注意的是,本文的基于扩散的细化可以作为即插即用模块应用于以往的工作,并为未来的研究提供新的启示。
引用:
Liu J, Wang G, Ye W, et al. DifFlow3D: Toward Robust Uncertainty-Aware Scene Flow Estimation with Diffusion Model[J]. arXiv preprint arXiv:2311.17456, 2023.
以上是DifFlow3D:场景流估计新SOTA,扩散模型又下一城!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉
