DeepMind终结大模型幻觉?标注事实比人类靠谱、还便宜20倍,全开源
大模型的幻觉终于要终结了?
今日,社交媒体平台Reddit上的一则帖子引起网友热议。帖子讨论的是谷歌DeepMind昨日提交的一篇论文《Long-form factuality in large language models(大语言模型的长篇事实性)》,文中提出的方法和结果让人得出大语言模型幻觉不再是问题了。
我们知道,大语言模型在响应开放式主题的fact-seeking(事实寻求)提问时,通常会生成包含事实错误的内容。DeepMind 针对这一现象进行了一些探索性研究。
为了对一个模型在开放域的长篇事实性进行基准测试,研究者使用 GPT-4 生成 LongFact,它是一个包含38个主题、数千个问题的提示集。然后他们提出使用搜索增强事实评估器(SAFE)来将 LLM 智能体用作长篇事实性的自动评估器。SAFE 的目的是提高事实可信度评估器的准确性。
关于SAFE,使用LLM可以更准确地解释每个实例的准确性。这里多步推理过程包括将搜索查询发送到Google搜索并确定搜索结果是否支持某个实例。
论文地址:https://arxiv.org/pdf/2403.18802.pdf
GitHub 地址:https://github.com/google-deepmind/long-form-factuality
此外,研究者提出将 F1 分数(F1@K)扩展为长篇实践性的聚合指标。他们平衡了响应中支持的实际的百分比(精度)和所提供事实相对于代表用户首选响应长度的超参数的百分比(召回率)。
实证结果表明,LLM 智能体可以实现超越人类的评级性能。在一组约 16k 个单独的事实上,SAFE 在 72% 的情况下与人类注释者一致,并且在 100 个分歧案例的随机子集上,SAFE 的赢率为 76%。同时,SAFE 的成本比人类注释者便宜 20 倍以上。
研究者还使用 LongFact,对四个大模型系列(Gemini、GPT、Claude 和 PaLM-2)的 13 种流行的语言模型进行了基准测试,结果发现较大的语言模型通常可以实现更好的长篇事实性。
论文作者之一、谷歌研究科学家 Quoc V. Le 表示,这篇对长篇事实性进行评估和基准测试的新工作提出了一个新数据集、 一种新评估方法以及一种兼顾精度和召回率的聚合指标。同时所有数据和代码将开源以供未来工作使用。
方法概览
LONGFACT:使用 LLM 生成长篇事实性的多主题基准
首先来看使用 GPT-4 生成的 LongFact 提示集,包含了 2280 个事实寻求提示,这些提示要求跨 38 个手动选择主题的长篇响应。研究者表示,LongFact 是第一个用于评估各个领域长篇事实性的提示集。
LongFact 包含两个任务:LongFact-Concepts 和 LongFact-Objects,根据问题是否询问概念或对象来区分。研究者为每个主题生成 30 个独特的提示,每个任务各有 1140 个提示。
SAFE:LLM 智能体作为事实性自动评分者
研究者提出了搜索增强事实评估器(SAFE),它的运行原理如下所示:
a)将长篇的响应拆分为单独的独立事实;
b)确定每个单独的事实是否与回答上下文中的提示相关;
c) 对于每个相关事实,在多步过程中迭代地发出 Google 搜索查询,并推理搜索结果是否支持该事实。
他们认为 SAFE 的关键创新在于使用语言模型作为智能体,来生成多步 Google 搜索查询,并仔细推理搜索结果是否支持事实。下图 3 为推理链示例。
为了将长篇响应拆分为单独的独立事实,研究者首先提示语言模型将长篇响应中的每个句子拆分为单独的事实,然后通过指示模型将模糊引用(如代词)替换为它们在响应上下文中引用的正确实体,将每个单独的事实修改为独立的。
为了对每个独立的事实进行评分,他们使用语言模型来推理该事实是否与在响应上下文中回答的提示相关,接着使用多步方法将每个剩余的相关事实评级为「支持」或「不支持」。具体如下图 1 所示。
在每个步骤中,模型都会根据要评分的事实和之前获得的搜索结果来生成搜索查询。经过一定数量的步骤后,模型执行推理以确定搜索结果是否支持该事实,如上图 3 所示。在对所有事实进行评级后,SAFE 针对给定提示 - 响应对的输出指标为 「支持」事实的数量、「不相关」事实的数量以及「不支持」事实的数量。
实验结果
LLM 智能体成为比人类更好的事实注释者
为了定量评估使用 SAFE 获得注释的质量,研究者使用了众包人类注释。这些数据包含 496 个提示 - 响应对,其中响应被手动拆分为单独的事实(总共 16011 个单独的事实),并且每个单独的事实都被手动标记为支持、不相关或不支持。
他们直接比较每个事实的 SAFE 注释和人类注释,结果发现 SAFE 在 72.0% 的单独事实上与人类一致,如下图 4 所示。这表明 SAFE 在大多数单独事实上都达到了人类水平的表现。然后检查随机采访的 100 个单独事实的子集,其中 SAFE 的注释与人类评分者的注释不一致。
研究者手动重新注释每个事实(允许访问 Google 搜索,而不仅仅是维基百科,以获得更全面的注释),并使用这些标签作为基本事实。他们发现,在这些分歧案例中,SAFE 注释的正确率为 76%,而人工注释的正确率仅为 19%,这代表 SAFE 的胜率是 4 比 1。具体如下图 5 所示。
这里,两种注释方案的价格非常值得关注。使用人工注释对单个模型响应进行评级的成本为 4 美元,而使用 GPT-3.5-Turbo 和 Serper API 的 SAFE 仅为 0.19 美元。
Gemini、GPT、Claude 和 PaLM-2 系列基准测试
最后,研究者在 LongFact 上对下表 1 中四个模型系列(Gemini、GPT、Claude 和 PaLM-2)的 13 个大语言模型进行了广泛的基准测试。
具体来讲,他们利用了 LongFact-Objects 中 250 个提示组成的相同随机子集来评估每个模型,然后使用 SAFE 获取每个模型响应的原始评估指标,并利用 F1@K 指标进行聚合。
结果发现,一般而言,较大的语言模型可以实现更好的长篇事实性。如下图 6 和下表 2 所示,GPT-4-Turbo 优于 GPT-4,GPT-4 优于 GPT-3.5-Turbo,Gemini-Ultra 优于 Gemini-Pro,PaLM-2-L-IT-RLHF 优于 PaLM- 2-L-IT。
更多技术细节和实验结果请参阅原论文。
以上是DeepMind终结大模型幻觉?标注事实比人类靠谱、还便宜20倍,全开源的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Vue.js 中字符串转对象时,首选 JSON.parse() 适用于标准 JSON 字符串。对于非标准 JSON 字符串,可根据格式采用正则表达式和 reduce 方法或解码 URL 编码字符串后再处理。根据字符串格式选择合适的方法,并注意安全性与编码问题,以避免 bug。

总结:将 Vue.js 字符串数组转换为对象数组有以下方法:基本方法:使用 map 函数,适合格式规整的数据。高级玩法:使用正则表达式,可处理复杂格式,但需谨慎编写,考虑性能。性能优化:考虑大数据量,可使用异步操作或高效数据处理库。最佳实践:清晰的代码风格,使用有意义的变量名、注释,保持代码简洁。

远程高级后端工程师职位空缺公司:Circle地点:远程办公职位类型:全职薪资:$130,000-$140,000美元职位描述参与Circle移动应用和公共API相关功能的研究和开发,涵盖整个软件开发生命周期。主要职责独立完成基于RubyonRails的开发工作,并与React/Redux/Relay前端团队协作。为Web应用构建核心功能和改进,并在整个功能设计过程中与设计师和领导层紧密合作。推动积极的开发流程,并确定迭代速度的优先级。要求6年以上复杂Web应用后端

Vue和Element-UI级联下拉框v-model绑定常见的坑点:v-model绑定的是一个代表级联选择框各级选中值的数组,而不是字符串;selectedOptions初始值必须为空数组,不可为null或undefined;动态加载数据需要使用异步编程技巧,处理好异步中的数据更新;针对庞大数据集,需要考虑使用虚拟滚动、懒加载等性能优化技术。

为了设置 Vue Axios 的超时时间,我们可以创建 Axios 实例并指定超时选项:在全局设置中:Vue.prototype.$axios = axios.create({ timeout: 5000 });在单个请求中:this.$axios.get('/api/users', { timeout: 10000 })。

利用地理空间技术高效处理700万条记录并创建交互式地图本文探讨如何使用Laravel和MySQL高效处理超过700万条记录,并将其转换为可交互的地图可视化。初始挑战项目需求:利用MySQL数据库中700万条记录,提取有价值的见解。许多人首先考虑编程语言,却忽略了数据库本身:它能否满足需求?是否需要数据迁移或结构调整?MySQL能否承受如此大的数据负载?初步分析:需要确定关键过滤器和属性。经过分析,发现仅少数属性与解决方案相关。我们验证了过滤器的可行性,并设置了一些限制来优化搜索。地图搜索基于城

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

MySQL启动失败的原因有多种,可以通过检查错误日志进行诊断。常见原因包括端口冲突(检查端口占用情况并修改配置)、权限问题(检查服务运行用户权限)、配置文件错误(检查参数设置)、数据目录损坏(恢复数据或重建表空间)、InnoDB表空间问题(检查ibdata1文件)、插件加载失败(检查错误日志)。解决问题时应根据错误日志进行分析,找到问题的根源,并养成定期备份数据的习惯,以预防和解决问题。
