RV融合性能拉爆!RCBEVDet:Radar也有春天,最新SOTA!
写在前面&笔者的个人理解
这篇讨论文关注的主要问题是3D目标检测技术在自动驾驶进程中的应用。尽管环境视觉相机技术的发展为3D目标检测提供了高分辨率的语义信息,这种方法因无法精确捕获深度信息和在恶劣天气或低光照条件下的表现不佳等问题而受限。针对这一问题,讨论提出了一种结合环视相机和经济型毫米波雷达传感器的多模式3D目标检测新方法——RCBEVDet。该方法通过综合使用多传感器的信息,提供了更丰富的语义信息以及在恶劣天气或低光照条件下的表现不佳等问题的解决方案。针对这一问题,讨论提出了一种结合环视相机和经济型毫米波雷达传感器的多模式3D目标检测新方法——RCBEVDet。通过综合使用多模传感器的信息,RCBEVDet能够提供高分辨率的语义信息,并在恶劣天气或低光照条件下表现出良好的性能。该方法的提出对于改善自动
RCBEVDet的核心在于两个关键设计:RadarBEVNet和Cross-Attention Multi-layer Fusion Module(CAMF)。RadarBEVNet旨在有效提取雷达特征,它包括双流雷达主干网络RCS(雷达截面积)感知的BEV(鸟瞰图)编码器。这样的设计利用了点云基和变换器基编码器处理雷达点,通过交互更新雷达点特征,同时将雷达特定的RCS特性作为目标大小的先验信息来优化BEV空间的点特征分布。 CAMF模块通过多模态交叉注意力机制解决了雷达点的方位误差问题,实现了雷达和相机的BEV特征图的动态对齐以及通过通道和空间融合的多模态特征自适应融合。 在实现中,通过交互更新雷达点特征,同时将雷达特定的RCS特性作为目标大小的先验信息来优化BEV空间的点特征分布。CAMF模块通过多模态交叉注意力机制解决了雷达点的方位误差问题,实现了雷达和相机的BEV特征图的动态对齐以及通过通道和空间融合的多模态特征自适应融合。
论文提出的新方法通过以下几点实现对现有问题的解决:
- 高效的雷达特征提取器:通过双流雷达主干和RCS感知的BEV编码器设计,专门针对雷达数据的特性进行优化,解决了使用为激光雷达设计的编码器处理雷达数据的不足。
- 强大的雷达-相机特征融合模块:采用变形的交叉注意力机制,有效处理环视图像和雷达输入之间的空间不对齐问题,提高融合效果。
论文的主要贡献如下:
- 提出了一种新颖的雷达-相机多模态3D目标检测器RCBEVDet,实现了高精度、高效率和强鲁棒性的3D目标检测。
- 设计了针对雷达数据的高效特征提取器RadarBEVNet,通过双流雷达主干和RCS感知BEV编码器,提高了特征提取的效率和准确性。
- 引入了Cross-Attention Multi-layer Fusion模块,通过变形交叉注意力机制实现了雷达和相机特征的精确对齐和高效融合。
- 在nuScenes和VoD数据集上达到了雷达-相机多模态3D目标检测的新的最佳性能,同时在精度和速度之间实现了最佳平衡,并展示了在传感器失效情况下的良好鲁棒性。
详解RCBEVDet
RadarBEVNet
RadarBEVNet是本论文提出的用于有效雷辆BEV(鸟现图)特征提取的网络架构,主要包括两个核心组成部分:双流雷达主干网络和RCS(雷达截面积)感知的BEV编码器。 双流雷达主干网络用于从多通道雷达数据中提取丰富的特征表示。它基于深度卷积神经网络(CNN)构建,在嵌套的卷积和池化层之间交替进行特征提取和降维操作,以逐渐获得抽
Dual-stream radar backbone
双流雷达主干网络由点基主干干和变换器基主干组成。点基主干网络通过多层感知机(MLP)和最大池化操作学习部雷达特征,其过程可以简化为以下公式:
在这里的表示雷达点特征,通过MLP增加特征维度后,再通过最大池化操作提取全局信息并与高维特征连接。
变换器基于干扰量块,引入了距离调制的注意力机制(DMSA),通过考虑雷达点之间的距离信息,优化模型聚集邻近信息的能力,促进模型的收敛。DMSA机制的自注意力可以表示为:
RCS-aware BEV encoder
为了解决传统雷达BEV编码器产生的BEV特征稀疏性问题,提出了RCS感知的BEV编码器。它利用RCS作为目标大小的先验信息,将雷达点特征散布到BEV空间中的多个像素上,而不是单一像素,以增加BEV特征的密度。该过程通过以下公式实现:
其中,为基于RCS的高斯式BEV权重图,通过最大化所有雷达点的权重图来优化。最终,将RCS散布得到的特征与连接并通过MLP处理,得到最终的RCS感知BEV特征。
整体而言,RadarBEVNet通过结合双流雷达主干网络和RCS感知的BEV编码器,高效地提取雷达数据的特征,并通过RCS作为目标大小的先验,优化了BEV空间的特征分布,为之后的多模态融合提供了强大的基础。
Cross-Attention Multi-layer Fusion Module
Cross-Attention Multi-layer Fusion Module (CAMF)是一种用于动态对齐和融合多模态特征的高级网络结构,特别针对雷达和相机生成的鸟瞰图(BEV)特征的动态对齐和融合设计。这一模块主要解决了由于雷达点云的方位误差导致的特征不对齐问题,通过变形的交叉注意力机制(Deformable Cross-Attention),有效地捕获雷达点的微小偏差,并减少了标准交叉注意力的计算复杂度。
CAMF利用变形交叉注意力机制来对齐相机和雷达的BEV特征。给定相机和雷达的BEV特征和,首先给和添加可学习的位置嵌入,然后将转换为查询和参考点,作为键和值。多头变形交叉注意力的计算可以表示为:
其中表示注意力头的索引,表示采样键的索引,是总的采样键数。表示采样偏移,是由和计算得到的注意力权重。
在通过交叉注意力对齐相机和雷达的BEV特征之后,CAMF使用通道和空间融合层来聚合多模态BEV特征。具体地,首先将两个BEV特征串联为,然后将送入CBR(卷积-批归一化-激活函数)块并通过残差连接获得融合特征。CBR块依次由一个的卷积层、一个批归一化层和一个ReLU激活函数组成。之后,连续应用三个CBR块以进一步融合多模态特征。
通过上述过程,CAMF有效地实现了雷达和相机BEV特征的精确对齐和高效融合,为3D目标检测提供了丰富而准确的特征信息,从而提高了检测性能。
相关实验
在VoD验证集上的3D目标检测结果比较中,RadarBEVNet通过融合相机和雷达数据,在整个标注区域内和兴趣区域内的平均精度(mAP)表现上均展现了优秀的性能。具体来说,对于整个标注区域,RadarBEVNet在汽车、行人和骑行者的检测上分别达到了40.63%、38.86%和70.48%的AP值,将综合mAP提升到了49.99%。而在兴趣区域,即靠近本车的驾驶通道内,RadarBEVNet的表现更为突出,分别在汽车、行人和骑行者的检测上达到了72.48%、49.89%和87.01%的AP值,综合mAP达到了69.80%。
这些结果揭示了几个关键点。首先,RadarBEVNet通过有效融合相机和雷达输入,能够充分利用两种传感器的互补优势,提升了整体的检测性能。相较于仅使用雷达的方法如PointPillar和RadarPillarNet,RadarBEVNet在综合mAP上有明显的提升,这表明多模态融合对于提高检测精度尤为重要。其次,RadarBEVNet在兴趣区域内的表现特别优秀,这对于自动驾驶应用来说尤为关键,因为兴趣区域内的目标通常对即时驾驶决策影响最大。最后,虽然在汽车和行人的检测上,RadarBEVNet的AP值略低于某些单一模态或其他多模态方法,但在骑行者检测和综合mAP表现上,RadarBEVNet展现了其综合性能的优势。RadarBEVNet通过融合相机和雷达的多模态数据,实现了在VoD验证集上的优异表现,特别是在对自动驾驶至关重要的兴趣区域内展现了强大的检测能力,证明了其作为一种有效的3D目标检测方法的潜力。
这个消融实验展示了RadarBEVNet在逐步添加主要组件时,对3D目标检测性能的持续改进。从基准模型BEVDepth开始,每一步增加的组件都显着提高了NDS(核心度量标准,反映了检测精度和完整性)和mAP(平均精确度,反映了模型对目标的检测能力)。
- 添加时间信息:通过引入时间信息,NDS和mAP分别提升了4.4和5.4个百分点。这表明时间信息对于提高3D目标检测的准确性和鲁棒性非常有效,可能是因为时间维度提供了额外的动态信息,有助于模型更好地理解场景和目标的动态特性。
- 加入PointPillar BEVFusion(基于雷达和相机的融合):这一步进一步提升了NDS和mAP,分别增加了1.7和1.8个百分点。这说明通过融合雷达和相机数据,模型能够获取更全面的场景理解,弥补了单一模态数据的局限。
- 引入RadarBEVNet:NDS和mAP分别再次提升2.1和3.0个百分点。 RadarBEVNet作为一个高效的雷达特征提取器,优化了雷达数据的处理,提高了特征的质量和有效性,这对于整体检测性能的提升至关重要。
- 添加CAMF(交叉注意力多层融合模块):通过精细的特征对齐和融合,NDS增加了0.7个百分点,mAP稍微提升到45.6,显示出在特征融合方面的有效性。这一步骤的改进虽然不如前几步显着,但依然证明了在多模态融合过程中,精确的特征对齐对于提高检测性能的重要性。
- 加入时间监督:最后,引入时间监督后,NDS微增0.4个百分点至56.8,而mAP略有下降0.3个百分点至45.3。这表明时间监督能进一步提升模型在时间维度的性能,尽管对mAP的贡献可能受到特定实验设置或数据分布的影响而略显限制。
总的来说,这一系列的消融实验清晰地展示了RadarBEVNet中每个主要组件对于提高3D目标检测性能的贡献,从时间信息的引入到复杂的多模态融合策略,每一步都为模型带来了性能上的提升。特别是,对雷达和相机数据的精细处理和融合策略,证明了在复杂的自动驾驶环境中,多模态数据处理的重要性。
讨论
论文提出的RadarBEVNet方法通过融合相机和雷达的多模态数据,有效地提升了3D目标检测的准确性和鲁棒性,尤其在复杂的自动驾驶场景中表现出色。通过引入RadarBEVNet和Cross-Attention Multi-layer Fusion Module(CAMF),RadarBEVNet不仅优化了雷达数据的特征提取过程,还实现了雷达和相机数据之间精准的特征对齐和融合,从而克服了单一传感器数据使用中的局限性,如雷达的方位误差和相机在低光照或恶劣天气条件下的性能下降。
优点方面,RadarBEVNet的主要贡献在于其能够有效处理并利用多模态数据之间的互补信息,提高了检测的准确度和系统的鲁棒性。 RadarBEVNet的引入使得雷达数据的处理更为高效,而CAMF模块确保了不同传感器数据之间的有效融合,弥补了各自的不足。此外,RadarBEVNet在实验中展现了在多个数据集上的优异性能,尤其是在自动驾驶中至关重要的兴趣区域内,显示了其在实际应用场景中的潜力。
缺点方面,尽管RadarBEVNet在多模态3D目标检测领域取得了显著成果,但其实现的复杂性也相应增加,可能需要更多的计算资源和处理时间,这在一定程度上限制了其在实时应用场景中的部署。此外,虽然RadarBEVNet在骑行者检测和综合性能上表现优秀,但在特定类别上(如汽车和行人)的性能仍有提升空间,这可能需要进一步的算法优化或更高效的特征融合策略来解决。
总之,RadarBEVNet通过其创新的多模态融合策略,在3D目标检测领域展现了显着的性能优势。尽管存在一些局限性,如计算复杂度较高和在特定检测类别上的性能提升空间,但其在提高自动驾驶系统准确性和鲁棒性方面的潜力不容忽视。未来的工作可以聚焦于优化算法的计算效率和进一步提高其在各类目标检测上的表现,以推动RadarBEVNet在实际自动驾驶应用中的广泛部署。
结论
论文通过融合相机和雷达数据,引入了RadarBEVNet和Cross-Attention Multi-layer Fusion Module(CAMF),在3D目标检测领域展现出显着的性能提升,特别是在自动驾驶的关键场景中表现优异。它有效地利用了多模态数据之间的互补信息,提高了检测准确性和系统的鲁棒性。尽管存在计算复杂度高和在某些类别上性能提升空间的挑战,\ours在推动自动驾驶技术发展,尤其是在提升自动驾驶系统的感知能力方面,展现了巨大的潜力和价值。未来工作可以关注于优化算法效率和进一步提升检测性能,以便更好地适应实时自动驾驶应用的需求。
以上是RV融合性能拉爆!RCBEVDet:Radar也有春天,最新SOTA!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

一先导与重点文章主要介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。这里重点理解自车到相机刚体转换(外参),相机到图像转换(内参),图像到像素有单位转换。3d向2d转换会有相应的畸变,平移等。重点:自车坐标系相机机体坐标系需要被重写的是:平面坐标系像素坐标系难点:要考虑图像畸变,去畸变和加畸变都是在像平面上去补偿二简介视觉系统一共有四个坐标系:像素平面坐标系(u,v)、图像坐标系(x,y)、相机坐标系()和世界坐标系()。每种坐标系之间均存在联系,

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

写在前面&出发点端到端的范式使用统一的框架在自动驾驶系统中实现多任务。尽管这种范式具有简单性和清晰性,但端到端的自动驾驶方法在子任务上的性能仍然远远落后于单任务方法。同时,先前端到端方法中广泛使用的密集鸟瞰图(BEV)特征使得扩展到更多模态或任务变得困难。这里提出了一种稀疏查找为中心的端到端自动驾驶范式(SparseAD),其中稀疏查找完全代表整个驾驶场景,包括空间、时间和任务,无需任何密集的BEV表示。具体来说,设计了一个统一的稀疏架构,用于包括检测、跟踪和在线地图绘制在内的任务感知。此外,重

最近一个月由于众所周知的一些原因,非常密集地和行业内的各种老师同学进行了交流。交流中必不可免的一个话题自然是端到端与火爆的特斯拉FSDV12。想借此机会,整理一下在当下这个时刻的一些想法和观点,供大家参考和讨论。如何定义端到端的自动驾驶系统,应该期望端到端解决什么问题?按照最传统的定义,端到端的系统指的是一套系统,输入传感器的原始信息,直接输出任务关心的变量。例如,在图像识别中,CNN相对于传统的特征提取器+分类器的方法就可以称之为端到端。在自动驾驶任务中,输入各种传感器的数据(相机/LiDAR
