在线建图与轨迹预测如何紧密结合?
原标题:Producing and Leveraging Online Map Uncertainty in Trajectory Prediction
论文链接:https://arxiv.org/pdf/2403.16439.pdf
代码链接:https://github.com/alfredgu001324/MapUncertaintyPrediction
作者单位:多伦多大学 Vector Institute NVIDIA Research 斯坦福大学
论文思路:
高精(HD)地图在现代自动驾驶汽车(AV)技术栈的发展中扮演了不可或缺的角色,尽管与此相关的标注和维护成本很高。因此,许多近期的工作提出了从传感器数据在线估计HD地图的方法,使自动驾驶技术栈中的整合变得复杂。特别是,它们不生成不确定性或置信度估计。本文扩展了多个最先进的在线地图估计方法,使其能够够额外估计不确定性,并且在真实世界的nuScenes驾驶数据集上的预测能力提高多达15%。在此过程中,本文发现纳入不确定性可以使训练收敛速度提高多达50%,并且在真实世界的nuScenes驾驶数据集上的预测能力提高多达15%。
主要贡献:
本文介绍了一个通用的矢量化地图不确定性描述,并扩展了许多最先进的在线地图估计方法,使其额外输出不确定性估计,而不会降低纯建图性能。
本文通过实证分析潜藏在的地图不确定性来源,确认了当前地图估计方法缺乏置信度的地方,并为未来的研究方向提供了信息。
本文将讨论近期的在线地图估计模型与多个最先进的轨迹预测方法相结合, 并展示了如何通过纳入在线建图不确定性显著提高下游预测模型的性能和训练特性,加速训练收敛速度高达50%,并提高在线预测准确性达到15%。
网络设计:
自动驾驶的一个关键组成部分是理解静态环境,例如,围绕自动驾驶汽车(AV)的道路布局和通行性。因此,已经开发出高精度(HD)地图来捕捉和提供此类信息,包含了道路边界、车道分隔线以及厘米级别的道路标记等语义信息。近年来,HD地图已被证明对于自动驾驶汽车的开发和部署是不可或缺的,今天已被广泛使用[35]。然而,HD地图的标注和长期维护成本高昂,并且它们只能在地理围栏区域(geofenced areas)使用,这限制了自动驾驶汽车的可扩展性(scalability)。”。
为了解决这些问题,许多近期的研究转向从传感器数据在线估计高精(HD)地图。广义上,它们的目标是预测地图元素的位置和类别,通常以多边形或折线的形式,全部来源于相机图像和激光雷达(LiDAR)扫描。然而,当前的在线地图估计方法并未产生任何相关的不确定性或置信度信息。这是有问题的,因为它导致下游使用者(consumers)隐含地假设推断出的地图组件是确定的,任何建图错误(例如,地图元素的移动或放置不正确)可能导致错误的下游行为。为此,本文提出揭示在线地图估计方法中的地图不确定性,并将其纳入下游模块中。具体来说,本文将地图不确定性纳入轨迹预测,并发现在结合了地图不确定性的 mapper-predictor 系统中(图1)与那些没有结合地图不确定性的系统相比,性能有显著提升。
图1. 从在线高精(HD)地图估计方法中产生不确定性,并将其纳入下游模块中,带来了多种好处。左图:真实的HD地图和代理位置。中图:使用MapTR[22]输出地图的HiVT[41]预测。右图:使用MapTR[22]输出的地图以及增加了点不确定性(由于左侧道路边界被停放的车辆遮挡,不确定性较大)的HiVT[41]预测。
图2. 许多在线高精矢量地图估计方法通过编码多摄像机图像,将它们转换到一个共同的鸟瞰图(BEV)特征空间,并回归地图元素的顶点来运作。本文的工作通过增加一个概率回归头来增强这种常见的输出结构,将每个地图顶点建模为拉普拉斯分布。为了评估由此产生的下游效应,本文进一步扩展了下游预测模型以编码地图不确定性,增强了基于图神经网络(GNN)和基于 Transformer 的地图编码器。
实验结果:
图3. 本文提出的不确定性表述能够捕捉由于自动驾驶车辆(AV)的摄像头与周围地图元素之间的遮挡而产生的不确定性。左图:前方和前右方摄像头的图像。右图:本文增强的在线高精地图模型生成的HD地图。椭圆表示分布的标准差。颜色代表道路边界、车道分隔线、人行横道和车道中心线。
图4. 在一个密集的停车场中,许多模型未能生成准确的地图。左图:后方和后左方摄像头的图像。右图:本文增强的在线高精地图模型生成的HD地图。椭圆展示了分布的标准差。颜色代表道路边界、车道分隔线、人行横道和车道中心线。
总结:
本文提出了一个通用的矢量化地图不确定性公式,并扩展了多种最新的在线地图估计方法,包括MapTR [22]、MapTRv2 [23]和StreamMapNet [38],使它们能够额外输出不确定性。本文系统地分析了产生的不确定性,并发现本文的方法捕捉到了许多不确定性来源(遮挡、与摄像头的距离、一天中的时间和天气)。最后,本文将这些在线地图估计模型与最新的轨迹预测方法(DenseTNT [13]和HiVT [41])结合起来,并展示了结合在线地图不确定性显著提高了预测模型的性能和训练特性,分别高达15%和50%。一个激动人心的未来研究方向是利用这些不确定性输出来衡量地图模型的校准度(类似于[16])。然而,这一任务因需要进行模糊点集匹配而变得复杂,这本身就是一个具有挑战性的问题。
引用:
Gu X, Song G, Gilitschenski I, et al. Producing and Leveraging Online Map Uncertainty in Trajectory Prediction[J]. arXiv preprint arXiv:2403.16439, 2024.
以上是在线建图与轨迹预测如何紧密结合?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

一先导与重点文章主要介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。这里重点理解自车到相机刚体转换(外参),相机到图像转换(内参),图像到像素有单位转换。3d向2d转换会有相应的畸变,平移等。重点:自车坐标系相机机体坐标系需要被重写的是:平面坐标系像素坐标系难点:要考虑图像畸变,去畸变和加畸变都是在像平面上去补偿二简介视觉系统一共有四个坐标系:像素平面坐标系(u,v)、图像坐标系(x,y)、相机坐标系()和世界坐标系()。每种坐标系之间均存在联系,

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

最近一个月由于众所周知的一些原因,非常密集地和行业内的各种老师同学进行了交流。交流中必不可免的一个话题自然是端到端与火爆的特斯拉FSDV12。想借此机会,整理一下在当下这个时刻的一些想法和观点,供大家参考和讨论。如何定义端到端的自动驾驶系统,应该期望端到端解决什么问题?按照最传统的定义,端到端的系统指的是一套系统,输入传感器的原始信息,直接输出任务关心的变量。例如,在图像识别中,CNN相对于传统的特征提取器+分类器的方法就可以称之为端到端。在自动驾驶任务中,输入各种传感器的数据(相机/LiDAR

写在前面&出发点端到端的范式使用统一的框架在自动驾驶系统中实现多任务。尽管这种范式具有简单性和清晰性,但端到端的自动驾驶方法在子任务上的性能仍然远远落后于单任务方法。同时,先前端到端方法中广泛使用的密集鸟瞰图(BEV)特征使得扩展到更多模态或任务变得困难。这里提出了一种稀疏查找为中心的端到端自动驾驶范式(SparseAD),其中稀疏查找完全代表整个驾驶场景,包括空间、时间和任务,无需任何密集的BEV表示。具体来说,设计了一个统一的稀疏架构,用于包括检测、跟踪和在线地图绘制在内的任务感知。此外,重
