开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!
0. 这篇文章干了啥?
提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。
下面一起来阅读一下这项工作~
1. 论文信息
标题:DepthFM: Fast Monocular Depth Estimation with Flow Matching
作者:Ming Gui, Johannes S. Fischer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, Björn Ommer
机构:MCML
原文链接:https://arxiv.org/abs/2403.13788
代码链接:https://github.com/CompVis/depth-fm
官方主页:https://depthfm.github.io/
2. 摘要
针对许多下游观光任务和应用至关重要。目前针对此问题的判别式方法受到模糊伪影的限制,而最先进的生成方法由于其SDE性质导致训练样本速度缓慢。我们不是从噪声开始,而是寻求从输入图像到深度图像的直接映射。我们观察到这可通过流匹配来有效地构建,因为其在解空间中的直线轨迹提供了效率和高质量。我们的研究表明,预先训练的图像扩散模型可用于作为流匹配深度模型的充分先验知识。在复杂自然场景的基准测试中,尽管仅在少量合成数据上进行训练,我们的轻量级方法以有利的低计算成本表现出最先进的性能。
3. 效果展示
DepthFM是一种具有强零样本泛化能力的快速推理流匹配模型,可利用强大的先验知识,并且很容易地泛化到未知的真实图像中。在合成数据上进行训练后,模型可以很好地泛化到未知的真实图像中,并对深度图像进行精确匹配。
与其他最先进的模型相比,DepthFM仅用一个函数评估就获得了明显更清晰的图像。Marigold的深度估计耗时是DepthFM的两倍,但无法生成相同粒度的深度图。
4. 主要贡献
(1)提出了DepthFM,一种最先进的、多功能的、快速的单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修补和深度条件图像合成等下游任务中的最新能力。
(2)展示了将强大的图像先验从扩散模型成功转移到流匹配模型,几乎不依赖于训练数据,也不需要真实世界的图像。
(3)表明,流匹配模型高效,并能在单个推理步骤内合成深度图。
(4)尽管仅在合成数据上进行训练,但DepthFM在基准数据集和自然图像上表现出色。
(5)将表面法线损失作为辅助目标,以获得更准确的深度估计。
(6)除了深度估计,还可可靠地预测其预测的置信度。
5. 具体原理是啥?
训练Pipeline。 训练受到流匹配和表面法向损失的限制:对于流匹配,使用数据依赖的流匹配来回归地面真实深度与对应图像之间的向量场。此外,通过一个表面法向损失来实现几何真实感。
数据相关的流匹配: DepthFM通过利用图像到深度对,回归出图像分布和深度分布之间的直线向量场。这种方法在不牺牲性能的情况下促进了高效的几步推理。
从扩散先验微调: 作者展示了成功将强大的图像先验从基础图像合成扩散模型(Stable Diffusion v2-1)转移到流匹配模型,几乎不依赖训练数据,并且不需要真实世界的图像。
辅助表面法线损失: 考虑到DepthFM只在合成数据上进行训练,大多数合成数据集提供了地面真实表面法线,将表面法线损失作为辅助目标,以增强DepthFM深度估计的准确性。
6. 实验结果
DepthFM通过仅在63k纯合成样本上进行训练展现出了显着的泛化能力,并且能够在室内外数据集上进行零- shot深度估计。表1定性地展示了DepthFM与最先进的对应模型的性能对比。虽然其他模型通常依赖于大量数据集进行训练,但DepthFM利用了基于扩散的基础模型中固有的丰富知识。这种方法不仅节省了计算资源,而且强调了模型的适应性和训练效率。
对基于扩散的Marigold深度估计、流匹配(FM)基准和DepthFM模型进行比较。每种方法仅使用一个集合成员进行评估,并针对两个常见基准数据集进行不同数量的函数评估(NFE)。与FM基准相比,DepthFM集成了训练过程中的法线损失和数据相关的耦合。
对于Marigold和的DepthFM模型在不同数量的功能评估中的定性结果。值得注意的是,通过一步推断,Marigold并没有给出任何有意义的结果,而DepthFM的结果已经显示了真实的深度图。
在Hypersim上进行深度补全。左:给予部分深度。中:深度估计从给定的部分深度。右:真值深度。
7. 总结
DepthFM,一种用于单目深度估计的流匹配方法。通过学习输入图像和深度之间的直接映射,而不是将正态分布去噪为深度图,该方法明显比当前基于扩散的解决方案更高效,同时仍提供细粒度的深度图,而不会出现判别式范式的常见伪影。 DepthFM使用预先训练好的图像扩散模型作为先验,有效地转移到了深度流匹配模型中。因此,DepthFM只在合成数据上进行了训练,但在推断期间仍然能很好地推广到自然图像。此外,辅助表面法线损失已被证明能改善深度估计。 DepthFM的轻量级方法具有竞争力,速度快,并提供可靠的置信度估计。
对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文
以上是开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
