大模型中常用的注意力机制GQA详解以及Pytorch代码实现
组查询注意力(Grouped Query Attention)是大型语言模型中的一种多查询注意力力方法,它的目标是在保持 MQA 速度的同时实现 MHA 的质量。Grouped Query Attention 将查询分组,每个组内的查询共享相同的注意力权重,这有助于降低计算复杂度和提高推理速度。
这篇文章中,我们将解释GQA的思想以及如何将其转化为代码。
GQA是在论文 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints paper.中提出,这是一个相当简单和干净的想法,并且建立在多头注意力之上。
GQA
标准多头注意层(MHA)由H个查询头、键头和值头组成。每个头都有D个维度。Pytorch的代码如下:
from torch.nn.functional import scaled_dot_product_attention # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 8, 64) value = torch.randn(1, 256, 8, 64) output = scaled_dot_product_attention(query, key, value) print(output.shape) # torch.Size([1, 256, 8, 64])
对于每个查询头,都有一个对应的键。这个过程如下图所示:
而GQA将查询头分成G组,每组共享一个键和值。可以表示为:
使用可视化的表达就能非常清楚地了解GQA的工作原理,就像我们上面说的那样。GQA是一个相当简单和干净的想法。
Pytorch代码实现
让我们编写代码将这种将查询头划分为G组,每个组共享一个键和值。我们可以使用einops库有效地执行对张量的复杂操作。
首先,定义查询、键和值。然后设置注意力头的数量,数量是随意的,但是要保证num_heads_for_query % num_heads_for_key = 0,也就是说要能够整除。我们的定义如下:
import torch # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 2, 64) value = torch.randn(1, 256, 2, 64) num_head_groups = query.shape[2] // key.shape[2] print(num_head_groups) # each group is of size 4 since there are 2 kv_heads
为了提高效率,交换seq_len和num_heads维度,einops可以像下面这样简单地完成:
from einops import rearrange query = rearrange(query, "b n h d -> b h n d") key = rearrange(key, "b s h d -> b h s d") value = rearrange(value, "b s h d -> b h s d")
然后就是需要在查询矩阵中引入”分组“的概念。
from einops import rearrange query = rearrange(query, "b (h g) n d -> b g h n d", g=num_head_groups) print(query.shape) # torch.Size([1, 4, 2, 256, 64])
上面的代码我们将二维重塑为二维:对于我们定义的张量,原始维度8(查询的头数)现在被分成两组(以匹配键和值中的头数),每组大小为4。
最后最难的部分是计算注意力的分数。但其实它可以在一行中通过insum操作完成的
from einops import einsum, rearrange # g stands for the number of groups # h stands for the hidden dim # n and s are equal and stands for sequence length scores = einsum(query, key, "b g h n d, b h s d -> b h n s") print(scores.shape) # torch.Size([1, 2, 256, 256])
scores张量和上面的value张量的形状是一样的。我们看看到底是怎么操作的
einsum帮我们做了两件事:
1、一个查询和键的矩阵乘法。在我们的例子中,这些张量的形状是(1,4,2,256,64)和(1,2,256,64),所以沿着最后两个维度的矩阵乘法得到(1,4,2,256,256)。
2、对第二个维度(维度g)上的元素求和——如果在指定的输出形状中省略了维度,einsum将自动完成这项工作,这样的求和是用来匹配键和值中的头的数量。
最后是注意分数与值的标准乘法:
import torch.nn.functional as F scale = query.size(-1) ** 0.5 attention = F.softmax(similarity / scale, dim=-1) # here we do just a standard matrix multiplication out = einsum(attention, value, "b h n s, b h s d -> b h n d") # finally, just reshape back to the (batch_size, seq_len, num_kv_heads, hidden_dim) out = rearrange(out, "b h n d -> b n h d") print(out.shape) # torch.Size([1, 256, 2, 64])
这样最简单的GQA实现就完成了,只需要不到16行python代码:
最后再简单提一句MQA:多查询注意(MQA)是另一种简化MHA的流行方法。所有查询将共享相同的键和值。原理图如下:
可以看到,MQA和MHA都可以从GQA推导出来。具有单个键和值的GQA相当于MQA,而具有与头数量相等的组的GQA相当于MHA。
GQA的好处是什么?
GQA是最佳性能(MQA)和最佳模型质量(MHA)之间的一个很好的权衡。
下图显示,使用GQA,可以获得与MHA几乎相同的模型质量,同时将处理时间提高3倍,达到MQA的性能。这对于高负载系统来说可能是必不可少的。
在pytorch中没有GQA的官方实现。所以我找到了一个比较好的非官方实现,有兴趣的可以试试:
https://www.php.cn/link/5b52e27a9d5bf294f5b593c4c071500e
GQA论文:
以上是大模型中常用的注意力机制GQA详解以及Pytorch代码实现的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
