目录
人工智能在制造业的兴起
增强机器视觉系统
机器人的采用正在上升
全面的定制解决方案
展望制造业人工智能的未来
首页 科技周边 人工智能 如何为制造业和自动化应用选择现人工智能技术

如何为制造业和自动化应用选择现人工智能技术

Apr 08, 2024 pm 02:58 PM
python 人工智能

如何为制造业和自动化应用选择现人工智能技术

在工业自动化领域的生产和实验室之外的日常生活中,人工智能(AI)的定义差异很大。

“人工智能”指的是一门包含了几种不同技术和工程学科的科学,包括机器视觉、计算机视觉、机器学习和深度学习。当一个基于这些技术组合的系统设计得当时(从应用分析到最终验证),它可以为工厂增加巨大的价值。

人工智能在制造业的兴起

斯坦福大学计算机科学教授约翰·麦卡锡(John McCarthy)被称为“人工智能之父”。人工智能可被定义为“制造智能机器,特别是智能计算机程序的科学和工程”。它与使用计算机了解人类类似任务有关,但人工智能不必局限于生物学上可察觉到的方法。

在这种情况下,人工智能可以为不同行业的制造商提供机器视觉系统自动化检测的有价值的工具。在人工智能中有机器学习和深度学习的子集。机器学习使用机器能够“学习”以提高不同任务的技术。其中一种技术是深度学习,它使用人工神经网络,例如卷积神经网络,模拟人脑的学习过程。

机器学习的一个子集,深度学习以及机器学习在工业自动化领域已经变得流行,因为它能够随着时间的推移从模型的持续分析中“学习”。深度学习的过程始于数据。例如,为了帮助机器视觉发现产品缺陷,制造商将通过上传描述缺陷或特征的图像来创建一个初步数据集,这些图像必须与“好”的图像一起被检测出来。通过协作标记初步数据集,训练模型并使用原始数据集的测试图像验证结果,测试生产中的性能,并重新训练以覆盖新的案例或特征,深度学习就随之而来。

根据考虑了所有因素并遵循适当的步骤,将深度学习工具实现到新的或现有的自动化检测系统中时,软件提供了价值,包括缺陷检测,特征分类和装配验证等任务。具体来说,这个软件在许多应用程序中提供了价值,例如缺陷检测、特征分类和验证验证等任务。人工智能技术可以帮助进行主观检查决策,否则需要进行人工检查。人工智能技术可以帮助识别具有高度复杂性或可变性而难以识别特定特征的场景。

增强机器视觉系统

人工智能在应用程序中的应用不是每个应用程序都受益的,而且它也不是独立的技术。相反,人工智能技术代表了自动化检测工具箱的强大工具,可以部署在几个不同的行业,在选择解决方案时制造商有多种选择。他们可以使用PyTorch或TensorFlow等框架在内部编写解决方案,购买现成的解决方案,或者选择特定于应用程序的支持人工智能的产品或系统。

市场上有几个现成的人工智能解决方案,允许最终用户构建自己的模型,而不绑定到特定的应用程序。例如,Elementary的QA平台提供了该公司所谓的“全堆栈视觉系统”,该系统具有图像头和机器学习软件,具有先进的分析功能,旨在识别问题,持续改进并解锁各种制造流程的新见解。该系统结合了传统的机器视觉工具,如条形码读取和光学字符识别,以及机器学习功能,为系统添加外部的检测功能。总的来说,该系统提供了额外的检测功能。

Mike Bruchanski表示:“人工智能不是魔法,它不能做所有事情,但它可以为自动检测系统添加强大的新功能。异常检测——例如在谷物中找到一片明显的块料——是一个基于机器学习的视觉工具的明确例子,它可以与机器视觉系统协同工作,进行质量控制。”

布鲁尚斯基表示,Elementary视觉系统的常见检测应用包括消费品包装(包括标签、帽子和配套)、医疗设备、汽车零部件和装配以及食品和饮料产品(通常涉及独特的装配检测版本)。

他说:“例如,在预先包装的早餐三明治检查中,很难建立一种模式,让软件了解奶酪是否不在正确的位置或根本没有,但我们的机器学习工具允许视觉系统查看堆叠的三明治,以快速做出判断。我们的平台在医疗设备组装检查中提供了类似的方法,同时还执行一系列汽车检查,从监管标签识别到检查焊缝的凹坑、空洞或裂缝。”

机器人的采用正在上升

近年来出现了一些特定于应用程序的人工智能产品,其目标是精简和简化某些任务。在某些情况下,这可能涉及到在数小时内启动并运行的整个系统。快速机器人公司的快速机器操作员(RMO)是这种系统的一个主要例子。每个RMO旨在处理常见的机器操作员任务,包括一个6轴机械臂、3D深度传感器、抓手和一个用于边缘计算和人工智能处理的控制盒。据该公司称,rmo配备了预先训练过的人工智能算法。

RapidRobotics产品副总裁JuanAparicio表示:“每个RMO都是为满足客户独特的生产要求而设计的。这些模块化的工作单元可以让制造商快速、低成本、低风险地扩展自动化。”

阿帕里西奥表示,人工智能的进步使机器人自动化比以往任何时候都更容易、更有效地部署。

“在我们的领域,人工智能最重要的价值主张之一是自动化人才的多样化。普遍的说法是,自动化已经渗透到美国制造业。通过我们的工作,我们发现情况肯定不是这样的。”

他补充说:“令研究人员惊讶的是,麻省理工学院最近一份关于未来工作的报告发现,中小型制造商中很少存在机器人。”

Aparicio表示,基于人工智能的机器人部署有很多机会,包括质量检测、自主移动机器人、组装和生成设计。

在机器人领域,Photoneo在其自动化解决方案中使用人工智能方法来识别,挑选和分类混合类型的物品。该公司利用cnn在一个大型对象数据集上进行训练,以识别各种形状、大小、颜色或材料的项目。如果软件遇到一个它以前没有见过的物体,它可以根据之前遇到过或训练过的类似物体来识别和分类该物体。此外,如果客户需要挑选可能导致模型性能下降的异常或自定义项目,则可以在特定的数据集上对软件进行训练。

Photoneo公关专家AndreaPufflerova表示:“客户通常需要一个机器人物品挑选系统,可以识别、挑选和分类各种形状、大小、颜色或材料的物品。“将人工智能集成到这样的解决方案中,使客户能够本地化和处理混合对象类型,包括水果或鱼等有机产品。”

她补充说:“这甚至可能包括那些通常难以识别的物品,比如灵活、易变形、充满褶皱和不规则的袋子。”

全面的定制解决方案

希望在运营中部署人工智能软件的公司可以更进一步,让Prolucid这样的公司构建和集成自定义机器学习模型,包括支持数据收集和标记、模型训练和部署。

Prolucid首席执行官DarcyBachert解释说:“作为一个系统集成商,我们的重点是应用先进的计算机视觉和基于人工智能的模型来帮助复杂的制造检测应用,以及各种非制造业客户,包括核和医疗。”“我们的典型方法是使用计算机视觉或其他现有工具以尽可能简单的方式解决问题。如果我们遇到一个应用程序,这些不太适合,那么我们会把人工智能作为一个选择,并从寻找适合特定用例的现成模型开始,比如异常检测或特征分类。”

Bachert指出,TensorFlow等开源平台对制造业和其他应用中采用人工智能产生了重大的积极影响,这些平台附带了为相关用例设计的预训练模型,以及整个Python生态系统。

他解释说:“从零开始开发一个模型可能非常耗时,这对制造业客户来说往往是不切实际的。”然而,如果可以利用预先训练的版本,那么它就大大简化了初始投资。”

展望制造业人工智能的未来

人工智能在制造业的未来,自动化将可能涉及使用高级分析来早期识别缺陷趋势,并最终防止它们的发生。例如,机器学习可以识别出一家公司在一天中的某些时间内什么时候产生了更多的缺陷,或者什么时候由于打印机墨水不足而导致日期代码标签开始褪色。根据Bruchanski的说法,该技术将识别出进程何时趋于糟糕,并向系统或操作员发送命令进行调整。

他说:“在未来,机器学习可以通过检测缺陷、识别错误根源的趋势来帮助优化流程,并将这些数据提供给制造商,最终帮助他们进一步实现无缺陷的环境。”

Pufflerova认为,结合基于模型和人工智能驱动方法的混合人工智能模型的发展也为工业应用提供了潜力。

她说:“今天训练一个在有限的例子集上工作得相当不错的系统可能还不够——人们还需要理解它的内部表示。与传统的黑盒机器学习或深度学习方法相比,混合人工智能模型提供了更快、更简单的学习,以及更好的解释性。”

对于Aparicio来说,谈论机器人自动化就很难不谈论未来的劳动力。

他说:“就人工智能和自动化使人类角色过时而言,机器人创新将带来变化,但最终将为人类带来更多机会。”“例如,机器人的部署总是需要工程师的参与,因为他们需要协调各种集成流程,混合硬件和软件,并设计一个可靠的系统。”

随着软件成为机器人培训和支持的主要工具,这些角色可能会更多地融入IT。考虑到这些技术的发展速度,企业可能会决定与垂直集成的解决方案提供商合作,让他们更专注于发展业务,而供应商则管理机器人车队。Bachert解释说,在这种情况下,机器人劳动力将从分布式团队转变为集中式方法,使机器人即服务公司能够利用规模经济和集中培训。

当谈到如何克服阻碍人工智能快速应用的障碍时,巴切特总结道,人工智能只是另一种可以用于工业自动化的工具。然而,他警告说,“随着开源社区的持续发展,越来越多的预训练模型可用,这些技术进入现实应用的门槛会降低。这种采用需要最终客户在他们的团队中投资培训,因为人工智能具有非常独特的挑战,而这些挑战并不总是存在于简单的计算机视觉或检测应用程序中。

以上是如何为制造业和自动化应用选择现人工智能技术的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

centos如何安装nginx centos如何安装nginx Apr 14, 2025 pm 08:06 PM

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。

See all articles