目录
反向任务训练测试
36年前的预言
首页 科技周边 人工智能 破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

Apr 09, 2024 pm 03:40 PM
ai 训练

大语言模型的「逆转诅咒」,被解开了!

这个诅咒在去年9月首次被发现,一时间引起LeCun、Karpathy、马库斯等一众大佬的惊呼。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

由于风光无两、不可一世的大模型竟存在着“阿克琉斯之踵”:一个在“A是B”上训练的语言模型,并不能正确回答出“B是否A”。

比如下面这个例子:在LLM明知道「汤姆·克鲁斯的母亲是Mary Lee Pfeiffer」的情况下,却无法答出「Mary Lee Pfeiffer的孩子是汤姆·克鲁斯」。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

——这可是当时最先进的GPT-4,结果连小孩子都具备的正常逻辑思维,LLM却做不到。

基于海量的数据之上,记住了几乎超过所有人类的知识,却表现得如此呆板,取得了智慧之火,却永远被囚禁于这个诅咒之中。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

论文地址:https://arxiv.org/pdf/2309.12288v1.pdf

这事一出,全网一片哗然。

一方面,网友们表示,大模型真傻,真的。单知道「A是B」,却不知道「B是A」,自己终于保住了作为人类的尊严。

而另一方面,研究人员们也开始对此展开研究,快马加鞭解决这个重大挑战。

近日,来自Meta FAIR的研究人员推出了反向训练大法来一举解决LLM的“逆转诅咒”。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

论文地址:https://arxiv.org/pdf/2403.13799.pdf

研究人员首先观察到,LLMs从左到右以自回归的方式进行训练,——这可能是导致逆转诅咒的原因。

那么,如果以从右到左的方向来训练LLM(逆向训练),就有可能让模型在反方向上看到事实。

可以将反向文本视为第二语言,通过多任务处理或跨语言预训练,来利用多个不同的来源。

研究人员考虑了4种反向类型:标记反转、单词反转、实体保留反转和随机段反转。

标记和单词反转,通过将序列分别拆分为标记或单词,并颠倒它们的顺序以形成新序列。

实体保留反转,在序列中查找实体名称,并在其中保留从左到右的单词顺序,同时进行单词反转。

随机段反转,将标记化的序列分割成随机长度的块,然后保留每个块内从左到右的顺序。

研究人员在1.4B和7B的参数规模上,测试了这些反转类型的有效性,结果表明,实体保留和随机分段反向训练可以减轻逆向诅咒,甚至在某些情况下完全消除它。

此外,研究人员还发现,与标准的从左到右训练相比,训练前逆转的方式使模型的表现有所提高,——所以反向训练可以作为一种通用的训练方法。

反向训练大法

逆向训练包括获取具有N个样本的训练数据集,并构造反向样本集REVERSE(x)。

函数REVERSE负责反转给定的字符串,具体做法如下:

单词反转 :每个示例首先被拆分为单词,然后在单词级别反转字符串,用空格将其连接在一起。

实体保留反转:对给定的训练样本运行实体检测器,将非实体也拆分为单词。然后将非实体的单词进行颠倒,而表示实体的单词保留原有词序。

随机段反转:这里没有使用实体检测器,而是尝试使用均匀采样,将序列随机分割成大小为1到k个token之间的句段,然后颠倒这些句段,但保持每个句段内的词序,之后,这些句段使用特殊标记[REV]连接。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

上表给出了在给定字符串上,不同反转类型的示例。

此时,语言模型仍然从左到右进行训练,在单词反转的情况下,就相当于从右到左预测句子。

逆向训练涉及对标准和反向示例的训练,因此训练token的数量增加了一倍,同时正向和反向训练样本都混合在一起。

逆向转换可以看作是模型必须学习的第二种语言,请注意,在反转的过程中,事实之间的关系保持不变,模型可以从语法中判断它是处于正向还是反向语言预测模式。

逆向训练的另一个角度可以由信息论来解释:语言建模的目标是学习自然语言的概率分布

反向任务训练测试

实体对映射

首先创建一个简单的基于符号数据集,以研究受控环境中的反转诅咒。

以一对一的方式随机配对实体a和b,训练数据包含所有(a→b)映射对,但仅包含一半的(b→a)映射,另一半作为测试数据。

模型必须从训练数据中推断规则a→b ⇔ b→a,然后将其推广到测试数据中的对。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

上表展示了符号反向任务的测试准确率(%)。尽管这项任务很简单,但标准语言模型训练完全失败了,这表明仅靠扩展不太可能解决。

相比之下,反向训练几乎可以解决两个单词实体的问题,但随着实体变长,其性能会迅速下降。

单词反转适用于较短的实体,但对于具有较多单词的实体,实体保留反转是必要的。当最大段长度k至少与实体一样长时,随机段反转表现良好。

恢复人名

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

上表展示了确定人全名的反转任务,当仅给出出生日期确定一个人的全名时,反转任务的准确性仍然接近于零,——这是因为在本文采用的实体检测方法中,日期被视为三个实体,因此在反转中不会保留它们的顺序。

如果将反转任务简化为仅确定人的姓氏,则单词级别的反转就足够了。

另一个可能会令人感到惊讶的现象是,实体保留方法可以确定该人的全名,但不能确定该人的姓氏。

这是一个已知的现象:语言模型可能完全无法检索知识片段的后期标记(比如姓氏)。

现实世界事实

这里作者训练了一个Llama-2 14亿参数模型,在从左到右方向上训练一个2万亿个token的基线模型。

相比之下,逆向训练仅使用1万亿token,但使用相同的数据子集在从左到右和从右到左两个方向上进行训练,——两个方向合起来是2万亿个token,在计算资源上做到公平公正。

为了测试对现实世界事实的反转能力,研究人员使用了一个名人任务,其中包含“诸如某个名人的母亲是谁”之类的问题,同时还包含更具挑战性的反向问题,比如“某个名人的父母的孩子是谁”。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

结果如上表所示。研究人员对每个问题的模型进行多次抽样,如果其中任何一个包含正确答案,则将其视为成功。

一般来说,由于模型在参数数量方面很小,预训练有限,并且缺乏微调,因此准确性通常相对较低。然而,反向训练的表现更加优秀。

36年前的预言

1988年,Fodor和Pylyshyn在《认知》刊物上发了一篇关于思维的系统性的文章。

破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」

如果你真的理解这个世界,那你就应该能够理解a相对于b的关系,也能理解b相对于a的关系。

即使是非语言认知生物,也应该能够做到这一点。

以上是破除36年前魔咒!Meta推出反向训练大法消除大模型「逆转诅咒」的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

centos关机命令行 centos关机命令行 Apr 14, 2025 pm 09:12 PM

CentOS 关机命令为 shutdown,语法为 shutdown [选项] 时间 [信息]。选项包括:-h 立即停止系统;-P 关机后关电源;-r 重新启动;-t 等待时间。时间可指定为立即 (now)、分钟数 ( minutes) 或特定时间 (hh:mm)。可添加信息在系统消息中显示。

如何检查CentOS HDFS配置 如何检查CentOS HDFS配置 Apr 14, 2025 pm 07:21 PM

检查CentOS系统中HDFS配置的完整指南本文将指导您如何有效地检查CentOS系统上HDFS的配置和运行状态。以下步骤将帮助您全面了解HDFS的设置和运行情况。验证Hadoop环境变量:首先,确认Hadoop环境变量已正确设置。在终端执行以下命令,验证Hadoop是否已正确安装并配置:hadoopversion检查HDFS配置文件:HDFS的核心配置文件位于/etc/hadoop/conf/目录下,其中core-site.xml和hdfs-site.xml至关重要。使用

CentOS上GitLab的备份方法有哪些 CentOS上GitLab的备份方法有哪些 Apr 14, 2025 pm 05:33 PM

CentOS系统下GitLab的备份与恢复策略为了保障数据安全和可恢复性,CentOS上的GitLab提供了多种备份方法。本文将详细介绍几种常见的备份方法、配置参数以及恢复流程,帮助您建立完善的GitLab备份与恢复策略。一、手动备份利用gitlab-rakegitlab:backup:create命令即可执行手动备份。此命令会备份GitLab仓库、数据库、用户、用户组、密钥和权限等关键信息。默认备份文件存储于/var/opt/gitlab/backups目录,您可通过修改/etc/gitlab

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

centos安装mysql centos安装mysql Apr 14, 2025 pm 08:09 PM

在 CentOS 上安装 MySQL 涉及以下步骤:添加合适的 MySQL yum 源。执行 yum install mysql-server 命令以安装 MySQL 服务器。使用 mysql_secure_installation 命令进行安全设置,例如设置 root 用户密码。根据需要自定义 MySQL 配置文件。调整 MySQL 参数和优化数据库以提升性能。

CentOS下GitLab的日志如何查看 CentOS下GitLab的日志如何查看 Apr 14, 2025 pm 06:18 PM

CentOS系统下查看GitLab日志的完整指南本文将指导您如何查看CentOS系统中GitLab的各种日志,包括主要日志、异常日志以及其他相关日志。请注意,日志文件路径可能因GitLab版本和安装方式而异,若以下路径不存在,请检查GitLab安装目录及配置文件。一、查看GitLab主要日志使用以下命令查看GitLabRails应用程序的主要日志文件:命令:sudocat/var/log/gitlab/gitlab-rails/production.log此命令会显示produc

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

See all articles