大模型做时序预测也很强!华人团队激活LLM新能力,超越一众传统模型实现SOTA
大语言模型潜力被激发——
无需训练大语言模型就能实现高精度时序预测,超越一切传统时序模型。
蒙纳士大学、蚂蚁和IBM研究院联合开发了一种通用框架,成功推动了大语言模型跨模态处理序列数据的能力。该框架已经成为一项重要的技术创新。
时序预测有益于城市、能源、交通、遥感等典型复杂系统的决策制定。
自此,大模型有望彻底改变时序/时空数据挖掘方式。
通用大语言模型重编程框架
研究团队提出了一个通用框架,将大语言模型轻松用于一般时间序列预测,而无需做任何训练。
主要提出两大关键技术:时序输入重编程;提示做前缀。
Time-LLM首先使用文本原型(Text Prototypes)对输入的时间数据进行重编程,通过使用自然语言表征来表示时间数据的语义信息,进而对齐两种不同的数据模态,使大语言模型无需任何修改即可理解另一种数据模态背后的信息。同时,通过大语言模型不需要任何特定的训练数据集,即可理解不同的数据模态的背后信息。这种方法不仅能够提高模型的准确性,还能够简化数据预处理过程。
为了更好地处理输入时序数据和对应任务的解析,作者提出了Prompt-as-Prefix(PaP)的范式。该范式通过在时序数据表征前添加额外的上下文信息和任务指令,充分激活LLM在时序任务上的处理能力。这种方法可以在时序任务上实现更精细的解析,并且通过在时序数据表格前添加额外的上下文信息和任务指令,充分激活LLM在时序任务上的处理能力。
主要贡献包括:
- 提出了通过重编程大型语言模型用于时序分析的全新概念,无需对主干语言模型做任何修改。
- 提出一个通用语言模型重编程框架Time-LLM,它包括将输入时序数据重新编程为更自然的文本原型表示,并通过声明性提示(例如领域专家知识和任务说明)来增强输入上下文,以指导LLM进行有效的跨域推理。
- 在主流预测任务中的表现始终超过现有最好的模型性能,尤其在少样本和零样本场景中。此外,Time-LLM在保持出色的模型重编程效率的同时,能够实现更高的性能。大大释放LLM在时间序列和其他顺序数据方面尚未开发的潜力。
具体来看这一框架,首先,输入时序数据先通过RevIN归一化操作,然后被切分成不同patch并映射到隐空间。
时序数据和文本数据在表达方式上存在显著差异,两种属于不同的模态。
时间序列既不能直接编辑,也不能无损地用自然语言描述。因此,我们需要将时序输入特征对齐到自然语言文本域上。
而对齐不同模态的一个常见方式是cross-attention,但是LLM固有的词汇表很大,因此无法有效直接将时序特征对齐到所有词上,而且也并不是所有词都和时间序列有对齐的语义关系。
为了解决这个问题,这项工作对词汇表进行了线形组合来获取文本原型,其中文本原型的数量远小于原始词汇量,组合起来可以用于表示时序数据的变化特征。
而为了充分激活LLM在指定时序任务上的能力,这项工作提出了提示做前缀的范式。
通俗点说,就是把时间序列数据集的一些先验信息,以自然语言的方式,作为前缀prompt,和对齐后的时序特征拼接喂给LLM,是不是能够提升预测效果?
在实践中,作者确定了构建有效提示的三个关键组件:
数据集上下文;(2)任务指令,让LLM适配不同的下游任务;(3)统计描述,例如趋势、时延等,让LLM更好地理解时序数据的特性。
团队在长程预测上经典的8大公开数据集上进行了全面的测试。
结果Time-LLM在基准比较中显着超过此前领域最优效果,比如对比直接使用GPT-2的GPT4TS,Time-LLM有明显提升,表明了该方法的有效性。
此外,在zero-shot场景中也表现了很强的预测能力。
本项目获得蚂蚁集团智能引擎事业部旗下AI创新研发部门NextEvo支持。
感兴趣的小伙伴可戳下方链接了解论文详情~
论文链接https://arxiv.org/abs/2310.01728。
以上是大模型做时序预测也很强!华人团队激活LLM新能力,超越一众传统模型实现SOTA的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本文介绍如何在Debian系统上自定义Apache的日志格式。以下步骤将指导您完成配置过程:第一步:访问Apache配置文件Debian系统的Apache主配置文件通常位于/etc/apache2/apache2.conf或/etc/apache2/httpd.conf。使用以下命令以root权限打开配置文件:sudonano/etc/apache2/apache2.conf或sudonano/etc/apache2/httpd.conf第二步:定义自定义日志格式找到或

Tomcat日志是诊断内存泄漏问题的关键。通过分析Tomcat日志,您可以深入了解内存使用情况和垃圾回收(GC)行为,从而有效定位和解决内存泄漏。以下是如何利用Tomcat日志排查内存泄漏:1.GC日志分析首先,启用详细的GC日志记录。在Tomcat启动参数中添加以下JVM选项:-XX: PrintGCDetails-XX: PrintGCDateStamps-Xloggc:gc.log这些参数会生成详细的GC日志(gc.log),包含GC类型、回收对象大小和时间等信息。分析gc.log

在Debian系统中,readdir函数用于读取目录内容,但其返回的顺序并非预先定义的。要对目录中的文件进行排序,需要先读取所有文件,再利用qsort函数进行排序。以下代码演示了如何在Debian系统中使用readdir和qsort对目录文件进行排序:#include#include#include#include//自定义比较函数,用于qsortintcompare(constvoid*a,constvoid*b){returnstrcmp(*(

在Debian系统中,readdir系统调用用于读取目录内容。如果其性能表现不佳,可尝试以下优化策略:精简目录文件数量:尽可能将大型目录拆分成多个小型目录,降低每次readdir调用处理的项目数量。启用目录内容缓存:构建缓存机制,定期或在目录内容变更时更新缓存,减少对readdir的频繁调用。内存缓存(如Memcached或Redis)或本地缓存(如文件或数据库)均可考虑。采用高效数据结构:如果自行实现目录遍历,选择更高效的数据结构(例如哈希表而非线性搜索)存储和访问目录信

本指南将指导您学习如何在Debian系统中使用Syslog。Syslog是Linux系统中用于记录系统和应用程序日志消息的关键服务,它帮助管理员监控和分析系统活动,从而快速识别并解决问题。一、Syslog基础知识Syslog的核心功能包括:集中收集和管理日志消息;支持多种日志输出格式和目标位置(例如文件或网络);提供实时日志查看和过滤功能。二、安装和配置Syslog(使用Rsyslog)Debian系统默认使用Rsyslog。您可以通过以下命令安装:sudoaptupdatesud

本文介绍如何在Debian系统中使用iptables或ufw配置防火墙规则,并利用Syslog记录防火墙活动。方法一:使用iptablesiptables是Debian系统中功能强大的命令行防火墙工具。查看现有规则:使用以下命令查看当前的iptables规则:sudoiptables-L-n-v允许特定IP访问:例如,允许IP地址192.168.1.100访问80端口:sudoiptables-AINPUT-ptcp--dport80-s192.16

Debian系统中,Nginx的访问日志和错误日志默认存储位置如下:访问日志(accesslog):/var/log/nginx/access.log错误日志(errorlog):/var/log/nginx/error.log以上路径是标准DebianNginx安装的默认配置。如果您在安装过程中修改过日志文件存放位置,请检查您的Nginx配置文件(通常位于/etc/nginx/nginx.conf或/etc/nginx/sites-available/目录下)。在配置文件中

在Debian邮件服务器上安装SSL证书的步骤如下:1.安装OpenSSL工具包首先,确保你的系统上已经安装了OpenSSL工具包。如果没有安装,可以使用以下命令进行安装:sudoapt-getupdatesudoapt-getinstallopenssl2.生成私钥和证书请求接下来,使用OpenSSL生成一个2048位的RSA私钥和一个证书请求(CSR):openss
