目录
启动 nomic-embed-text 服务
使用 nomic-embed-text 服务
1.读取本地的 txt 文件
2.把 txt 内容分割成文本块
3.对文本块执行 embeddings 操作
首页 科技周边 人工智能 本地运行性能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服务,太方便了!

本地运行性能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服务,太方便了!

Apr 15, 2024 am 09:01 AM
性能 openai 模型

Ollama 是一款超级实用的工具,让你能够在本地轻松运行 Llama 2、Mistral、Gemma 等开源模型。本文我将介绍如何使用 Ollama 实现对文本的向量化处理。如果你本地还没有安装 Ollama,可以阅读这篇文章。

本文我们将使用 nomic-embed-text[2] 模型。它是一种文本编码器,在短的上下文和长的上下文任务上,性能超越了 OpenAI text-embedding-ada-002 和 text-embedding-3-small。

启动 nomic-embed-text 服务

当你已经成功安装好 ollama 之后,使用以下命令拉取 nomic-embed-text 模型:

ollama pull nomic-embed-text
登录后复制

待成功拉取模型之后,在终端中输入以下命令,启动 ollama 服务:

ollama serve
登录后复制

之后,我们可以通过 curl 来验证 embedding 服务是否能正常运行:

curl http://localhost:11434/api/embeddings -d '{"model": "nomic-embed-text","prompt": "The sky is blue because of Rayleigh scattering"}'
登录后复制

使用 nomic-embed-text 服务

接下来,我们将介绍如何利用 langchainjs 和 nomic-embed-text 服务,实现对本地 txt 文档执行 embeddings 操作。相应的流程如下图所示:

本地运行性能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服务,太方便了!图片

1.读取本地的 txt 文件

import { TextLoader } from "langchain/document_loaders/fs/text";async function load(path: string) {const loader = new TextLoader(path);const docs = await loader.load();return docs;}
登录后复制

在以上代码中,我们定义了一个 load 函数,该函数内部使用 langchainjs 提供的 TextLoader 读取本地的 txt 文档。

2.把 txt 内容分割成文本块

import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";import { Document } from "langchain/document";function split(documents: Document[]) {const splitter = new RecursiveCharacterTextSplitter({chunkSize: 500,chunkOverlap: 20,});return splitter.splitDocuments(documents);}
登录后复制

在以上代码中,我们使用 RecursiveCharacterTextSplitter 对读取的 txt 文本进行切割,并设置每个文本块的大小是 500。

3.对文本块执行 embeddings 操作

const EMBEDDINGS_URL = "http://127.0.0.1:11434/api/embeddings";async function embedding(path: string) {const docs = await load(path);const splittedDocs = await split(docs);for (let doc of splittedDocs) {const embedding = await sendRequest(EMBEDDINGS_URL, {model: "nomic-embed-text",prompt: doc.pageContent,});console.dir(embedding.embedding);}}
登录后复制

在以上代码中,我们定义了一个 embedding 函数,在该函数中,会调用前面定义的 load 和 split 函数。之后对遍历生成的文本块,然后调用本地启动的 nomic-embed-text embedding 服务。其中 sendRequest 函数用于发送 embeding 请求,它的实现代码很简单,就是使用 fetch API 调用已有的 REST API。

async function sendRequest(url: string, data: Record<string, any>) {try {const response = await fetch(url, {method: "POST",body: JSON.stringify(data),headers: {"Content-Type": "application/json",},});if (!response.ok) {throw new Error(`HTTP error! status: ${response.status}`);}const responseData = await response.json();return responseData;} catch (error) {console.error("Error:", error);}}
登录后复制

接着,我们继续定义一个 embedTxtFile 函数,在该函数内部直接调用已有的 embedding 函数并添加相应的异常处理。

async function embedTxtFile(path: string) {try {embedding(path);} catch (error) {console.dir(error);}}embedTxtFile("langchain.txt")
登录后复制

最后,我们通过 npx esno src/index.ts 命令来快速执行本地的 ts 文件。若成功执行 index.ts 中的代码,在终端将会输出以下结果:

本地运行性能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服务,太方便了!图片

其实,除了使用上述的方式之外,我们还可以直接利用 @langchain/community 模块中的 [OllamaEmbeddings](https://js.langchain.com/docs/integrations/text_embedding/ollama "OllamaEmbeddings") 对象,它内部封装了调用 ollama embedding 服务的逻辑:

import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama";const embeddings = new OllamaEmbeddings({model: "nomic-embed-text", baseUrl: "http://127.0.0.1:11434",requestOptions: {useMMap: true,numThread: 6,numGpu: 1,},});const documents = ["Hello World!", "Bye Bye"];const documentEmbeddings = await embeddings.embedDocuments(documents);console.log(documentEmbeddings);
登录后复制

本文介绍的内容涉及开发 RAG 系统时,建立知识库内容索引的处理过程。如果你对 RAG 系统还不了解的话,可以阅读相关的文章。

参考资料

[1]Ollama: https://ollama.com/

[2]nomic-embed-text: https://ollama.com/library/nomic-embed-text

以上是本地运行性能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服务,太方便了!的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 Jul 19, 2024 am 01:29 AM

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

Yolov10:详解、部署、应用一站式齐全! Yolov10:详解、部署、应用一站式齐全! Jun 07, 2024 pm 12:05 PM

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显着进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显着的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

不同Java框架的性能对比 不同Java框架的性能对比 Jun 05, 2024 pm 07:14 PM

不同Java框架的性能对比:RESTAPI请求处理:Vert.x最佳,请求速率达SpringBoot2倍,Dropwizard3倍。数据库查询:SpringBoot的HibernateORM优于Vert.x及Dropwizard的ORM。缓存操作:Vert.x的Hazelcast客户机优于SpringBoot及Dropwizard的缓存机制。合适框架:根据应用需求选择,Vert.x适用于高性能Web服务,SpringBoot适用于数据密集型应用,Dropwizard适用于微服务架构。

清华接手,YOLOv10问世:性能大幅提升,登上GitHub热榜 清华接手,YOLOv10问世:性能大幅提升,登上GitHub热榜 Jun 06, 2024 pm 12:20 PM

目标检测系统的标杆YOLO系列,再次获得了重磅升级。自今年2月YOLOv9发布之后,YOLO(YouOnlyLookOnce)系列的接力棒传到了清华大学研究人员的手上。上周末,YOLOv10推出的消息引发了AI界的关注。它被认为是计算机视觉领域的突破性框架,以实时的端到端目标检测能力而闻名,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。论文地址:https://arxiv.org/pdf/2405.14458项目地址:https://github.com/THU-MIG/yo

谷歌Gemini 1.5技术报告:轻松证明奥数题,Flash版比GPT-4 Turbo快5倍 谷歌Gemini 1.5技术报告:轻松证明奥数题,Flash版比GPT-4 Turbo快5倍 Jun 13, 2024 pm 01:52 PM

今年2月,谷歌上线了多模态大模型Gemini1.5,通过工程和基础设施优化、MoE架构等策略大幅提升了性能和速度。拥有更长的上下文,更强推理能力,可以更好地处理跨模态内容。本周五,GoogleDeepMind正式发布了Gemini1.5的技术报告,内容覆盖Flash版等最近升级,该文档长达153页。技术报告链接:https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf在本报告中,谷歌介绍了Gemini1

C++中如何优化多线程程序的性能? C++中如何优化多线程程序的性能? Jun 05, 2024 pm 02:04 PM

优化C++多线程性能的有效技术包括:限制线程数量,避免争用资源。使用轻量级互斥锁,减少争用。优化锁的范围,最小化等待时间。采用无锁数据结构,提高并发性。避免忙等,通过事件通知线程资源可用性。

ChatGPT 现已可用于 macOS,并发布了专用应用程序 ChatGPT 现已可用于 macOS,并发布了专用应用程序 Jun 27, 2024 am 10:05 AM

Open AI 的 ChatGPT Mac 应用程序现在可供所有人使用,过去几个月仅限订阅 ChatGPT Plus 的用户使用。只要您拥有最新的 Apple S,该应用程序的安装就像任何其他本机 Mac 应用程序一样

See all articles