预测性人工智能将如何帮助实现净零排放
预测性人工智能(AI)是生产式人工智能的表亲,其使用历史数据中的模式来预测未来结果或对未来事件进行分类。有专家表示,该技术可用于提供可操作的见解并辅助决策和战略制定。 预测性人工智能利用大规模数据分析和机器学习算法,从历史数据中发现隐藏的模式和趋势,并将其应用于未来情景。通过了解过去的模式,我们可以更好地了解未来可能发生的情况,并制定相应的战略。 预测性人工智能在各个领域都有应用,例如
在过去一年左右的时间里,我们看到能源行业出现了许多新的、令人兴奋的预测性人工智能应用,以更好地维护和优化能源资源产。事实上,这项技术的进步非常迅速。而挑战在于提供“正确”的数据,使它们有效。而由于能源行业更广泛的数字化转型,这一问题开始得到解决。
如今,我们不仅看到预测性人工智能在资产受损风险评估和需要预防性维护时的应用,还看到它与天气和交通数据相结合的最佳方式支持将工程师派往现场。反过来,这有助于提高整个能源系统的可靠性。
不断变化的需求模式
虽然进一步向净零排放转型得称赞,但它确实扰乱了能源系统的供应方和需求方。电动汽车(EV)、住宅太阳能和电加热都在不断改变需求模式。与此同时,电网中可再生能源的增加导致供应能力波动。毕竟,没有风,风力发电场就没有特别的用处,没有太阳,太阳能发电场也没有特别的用处。
此外,我们看到的极端天气事件越来越频繁,过去30年来,极端天气事件数量急剧上升,如今影响到世界的每个角落。这些天气事件同时影响供应和需求,因此,供应和需求模式可能特别具有挑战性。
当前媒体上很多头条新闻都是利用预测性人工智能来学习这些新模式,并迅速部署模型以支持需求灵活性。然而,将需求与可用供应匹配是传统能源系统的逆向。
通过更好地预测能源系统何时会出现供需不平衡,可以更好地安排电动汽车的充电,以确保电网的平衡。这样做的回报是所有人都能用上更便利的电。此外,如果充电时间与可再生能源供应时间相吻合,那么与该需求相关的二氧化碳排放量也可减少,因此这是一个双赢的结果。
降低风险
当然,能源行业面临的一大风险是能源不平衡,因为这可能导致停电。准确预测的能力对于解决供需不平衡至关重要。
极端天气不仅会影响供需状态,还会损坏输电线并妨碍发电厂正常运行。值得庆幸的是,目前已经有一些创新项目,例如苏格兰电力公司开展的项目,旨在通过为整个系统提供增强的情报,更好地预测极端天气事件何时会导致停电以及停电地点。
平衡问题
平衡能源系统始终依赖于能够准确预测客户行为。但这始终是总体层面的,因为供应商可以随意增加或减少能源供应。然而,现在,随着配电网变得更加活跃,分布式能源资源导致电力双向流动,电网的平衡越来越精细,对局部可预测性的需求也越来越大。
值得庆幸的是,借助预测性人工智能,现在不仅可以从个人消费者层面了解客户需求模式,甚至可以从设备层面了解客户需求模式。
尽管尚未得到广泛应用,但预测性人工智能正越来越多地被用于支持需求侧灵活性,特别是电加热和电动汽车等领域——它们通常是房屋或建筑物中最大的负载。
如果建筑物配备了储能系统,那么该系统也更有可能配备由预测人工智能提供的优化算法,该算法可以学习使用模式来安排电池的导入和导出。
确保新的预测模型达到标准
根据GlobalData 最近的一份报告,预测性人工智能已经在推动可再生能源预测、电网运营和优化、分布式能源资产的协调以及能源行业的需求侧管理方面带来显著的改进。此外,它预测该技术将在未来几年加强资产优化和客户细分方面发挥重要作用。
毫无疑问,它正在让能源行业变得更好,无论是检测和修复故障、更好地预测天气模式,还是提供更准确的使用情况监控。未来几年这项技术的发展前景值得期待。
虽然未来令人兴奋,但它仍处于新兴技术阶段,需要克服扩大规模时经常遇到的挑战。为了真正取得成功,还需要增加新的治理程序,以确保用于训练新预测模型的数据质量达到标准。
通过详细的日志记录、审计跟踪、验证框架和监督程序来确认所有训练数据的完整性非常重要。然后不断评估数据集以发现新问题。
因此,这正是未来能源行业数字化的重点。例如,该行业已经开始设想能源系统的数字孪生,其中预测性人工智能和开放数据相结合,以更好地规划和运营更加分散和灵活的能源系统。
总结
预测性人工智能(AI)在实现净零排放方面具有重要作用。首先,AI可以通过大数据分析和机器学习算法对能源系统进行精准预测和优化管理,帮助企业和政府制定更有效的减排策略。其次,AI在能源生产和利用过程中的应用,如智能电网管理、风力和太阳能发电预测等,可以提高能源利用效率,降低碳排放。
此外,AI还可以在交通运输、工业生产、建筑设计等领域实现智能化管理,减少能源消耗和排放。最重要的是,AI还可以促进能源转型和创新,推动可再生能源、清洁能源等低碳技术的发展和应用,为实现净零排放目标提供技术支持和路径规划。因此,预测性人工智能的广泛应用将为实现净零排放目标提供重要支持和保障。
以上是预测性人工智能将如何帮助实现净零排放的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

CentOS 关机命令为 shutdown,语法为 shutdown [选项] 时间 [信息]。选项包括:-h 立即停止系统;-P 关机后关电源;-r 重新启动;-t 等待时间。时间可指定为立即 (now)、分钟数 ( minutes) 或特定时间 (hh:mm)。可添加信息在系统消息中显示。

CentOS系统下GitLab的备份与恢复策略为了保障数据安全和可恢复性,CentOS上的GitLab提供了多种备份方法。本文将详细介绍几种常见的备份方法、配置参数以及恢复流程,帮助您建立完善的GitLab备份与恢复策略。一、手动备份利用gitlab-rakegitlab:backup:create命令即可执行手动备份。此命令会备份GitLab仓库、数据库、用户、用户组、密钥和权限等关键信息。默认备份文件存储于/var/opt/gitlab/backups目录,您可通过修改/etc/gitlab

检查CentOS系统中HDFS配置的完整指南本文将指导您如何有效地检查CentOS系统上HDFS的配置和运行状态。以下步骤将帮助您全面了解HDFS的设置和运行情况。验证Hadoop环境变量:首先,确认Hadoop环境变量已正确设置。在终端执行以下命令,验证Hadoop是否已正确安装并配置:hadoopversion检查HDFS配置文件:HDFS的核心配置文件位于/etc/hadoop/conf/目录下,其中core-site.xml和hdfs-site.xml至关重要。使用

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

在 CentOS 上安装 MySQL 涉及以下步骤:添加合适的 MySQL yum 源。执行 yum install mysql-server 命令以安装 MySQL 服务器。使用 mysql_secure_installation 命令进行安全设置,例如设置 root 用户密码。根据需要自定义 MySQL 配置文件。调整 MySQL 参数和优化数据库以提升性能。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

重启 SSH 服务的命令为:systemctl restart sshd。步骤详解:1. 访问终端并连接到服务器;2. 输入命令:systemctl restart sshd;3. 验证服务状态:systemctl status sshd。

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所
