首页 科技周边 人工智能 CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

Apr 22, 2024 pm 02:37 PM
git 工程 动态人体重建 南洋理工大学

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。

在日常活动中,人的运动经常引起衣服的附属运动 (secondary motion of clothes) 并因此产生不同的衣服褶皱,而这需要对人体及衣服的几何、运动(人体姿态及速度动力学等)及外观同时进行动态建模。由于此过程涉及复杂的人与衣服的非刚体物理交互,导致传统三维表征往往难以应对。

近年从视频序列中学习动态数字人渲染已取得了极大的进展,现有方法往往把渲染视为从人体姿态到图像的神经映射,采用 「运动编码器—运动特征—外观解码器」的范式。而该范式基于图像损失做监督,过于关注每一帧图像重建而缺少对运动连续性的建模,因此对复杂运动如 「人体运动及衣服附属运动」难以有效建模。

为解决这一问题,来自新加坡南洋理工大学 S-Lab 团队提出运动—外观联合学习的动态人体重建新范式,并提出了基于人体表面的三平面运动表征 (surface-based triplane),把运动物理建模和外观建模统一在一个框架中,为提升动态人体渲染质量开辟了新的思路。该新范式可有效对衣服附属运动建模,并可用于从快速运动的视频(如跳舞)中学习动态人体重建,以及渲染运动相关的阴影。在渲染效率上比三维体素渲染方法快 9 倍,LPIPS 图像质量提高约 19 个百分点。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

  • 论文标题:SurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering
  • 论文地址:https://arxiv.org/pdf/2404.01225.pdf
  • 项目主页:https://taohuumd.github.io/projects/SurMo
  • Github 链接:https://github.com/TaoHuUMD/SurMo
CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式
方法概览

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

针对已有范式「运动编码器—运动特征—外观解码器」只关注于外观重建而忽略运动连续性建模的缺点,提出了新范式 SurMo :「①运动编码器—运动特征——②运动解码器、③外观解码器」。如上图所示,该范式分为三个阶段:

  • 区别于已有方法在稀疏三维空间对运动建模,SurMo 提出基于人体表面流形场(或紧凑的二维纹理 UV 空间)的四维(XYZ-T)运动建模,并通过定义在人体表面的三平面(surface-based triplane)来表征运动。
  • 提出运动物理解码器去根据当前运动特征(如三维姿态、速度、运动轨迹等)预测下一帧运动状态,如运动的空间偏导—表面法向量和时间偏导—速度,以此对运动特征做连续性建模。
  • 四维外观解码,对运动特征在时序上解码以此渲染三维自由视点视频,主要通过混合体素—纹理神经渲染方式实现 (Hybrid Volumetric-Textural Rendering, HVTR [Hu et al. 2022]).

SurMo 可基于重建损失和对抗损失端到端训练,从视频中学习动态人体渲染。

实验结果

该研究在 3 个数据集,共 9 个动态人体视频序列上进行了实验评估: ZJU-MoCap [Peng et al. 2021], AIST [Li, Yang et al. 2021] MPII-RRDC [Habermann et al. 2021] .

新视点时序渲染

该研究在 ZJU-MoCap 数据集上探究在新视点下对一段时序的动态渲染效果 (time-varying appearances),特别研究了 2 段序列,如下图所示。每段序列包含相似的姿态但出现在不同的运动轨迹中,如①②,③④,⑤⑥。SurMo 可对运动轨迹建模,因此生成随时间变化的动态效果,而相关的方法生成的结果只取决于姿态,在不同轨迹下衣服的褶皱几乎一样。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

渲染运动相关的阴影及衣服附属运动

SurMo 在 MPII-RRDC 数据集上探究了运动相关的阴影及衣服附属运动,如下图所示。该序列在室内摄影棚拍摄,在灯光条件下,由于自遮挡问题,表演者身上会出现与运动相关的阴影。

SurMo 在新视点渲染下,可恢复这些阴影,如①②,③④,⑦⑧。而对比方法 HumanNeRF [Weng et al.] 则无法恢复与运动相关的阴影。此外,SurMo 可重建随运动轨迹变化的衣服附属运动,如跳跃运动中不同的褶皱 ⑤⑥,而 HumanNeRF 无法重建该动态效果。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

渲染快速运动的人体

SurMo 也从快速运动的视频中渲染人体,并恢复与运动相关的衣服褶皱细节,而对比方法则无法渲染出这些动态细节。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

消融实验

(1)人体表面运动建模

该研究对比了两种不同的运动建模方式:目前常用的在体素空间 (Volumetric space) 的运动建模,以及 SurMo 提出的在人体表面流形场的运动建模 (Surface manifold) ,具体比较了 Volumetric triplane 与 Surface-based triplane,如下图所示。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

可以发现,Volumetric triplane 是一种稀疏表达,仅有大约 21-35% 的特征用于渲染,而 Surface-based triplane 特征利用率可达 85%,因此在处理自遮挡方面更有优势,如(d)所示。同时 Surface-based triplane 可通过体素渲染中过滤部分远离表面的点实现更快的渲染,如图(c)所示。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

同时,该研究论证 Surface-based triplane 可比 Volumetric triplane 在训练过程收敛更快,在衣服褶皱细节、自遮挡上均有明显优势,如上图所示。

(2)动力学学习

SurMo 通过消融实验研究了运动建模的效果,如下图所示。结果显示,SurMo 可解耦运动的静态特性(如某一帧下固定姿态)及动态特性(如速度)。例如当改变速度的时候,贴身衣服褶皱不变,如①,而宽松衣服褶皱则受速度影响较大,如②,这与日常人们的观测相一致。

CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式

以上是CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

deepseek怎么安装 deepseek怎么安装 Feb 19, 2025 pm 05:48 PM

DeepSeek的安装方法有多种,包括:从源码编译(适用于经验丰富的开发者)使用预编译包(适用于Windows用户)使用Docker容器(最便捷,无需担心兼容性)无论选择哪种方法,请仔细阅读官方文档并充分准备,避免不必要的麻烦。

英伟达玩转剪枝、蒸馏:把Llama 3.1 8B参数减半,性能同尺寸更强 英伟达玩转剪枝、蒸馏:把Llama 3.1 8B参数减半,性能同尺寸更强 Aug 16, 2024 pm 04:42 PM

小模型崛起了。上个月,Meta发布了Llama3.1系列模型,其中包括Meta迄今为止最大的405B模型,以及两个较小的模型,参数量分别为700亿和80亿。Llama3.1被认为是引领了开源新时代。然而,新一代的模型虽然性能强大,但部署时仍需要大量计算资源。因此,业界出现了另一种趋势,即开发小型语言模型(SLM),这种模型在许多语言任务中表现足够出色,部署起来也非常便宜。最近,英伟达研究表明,结构化权重剪枝与知识蒸馏相结合,可以从初始较大的模型中逐步获得较小的语言模型。图灵奖得主、Meta首席A

DeepSeek使用常见问题汇总 DeepSeek使用常见问题汇总 Feb 19, 2025 pm 03:45 PM

DeepSeekAI工具使用指南及常见问题解答DeepSeek是一款功能强大的AI智能工具,本文将解答一些常见的使用问题,助您快速上手。常见问题解答:不同访问方式的区别:网页版、App版和API调用在功能上没有区别,App只是网页版的封装。本地部署使用的是蒸馏模型,能力略逊于完整版DeepSeek-R1,但32位模型理论上拥有90%的完整版能力。酒馆(SillyTavern)是什么?SillyTavern是一个前端界面,需要通过API或Ollama调用AI模型。破限是什么

数十年来首次取得进展,陶哲轩高徒、赵宇飞高徒突破组合数学难题 数十年来首次取得进展,陶哲轩高徒、赵宇飞高徒突破组合数学难题 Aug 15, 2024 pm 05:04 PM

近期,一个数十年来未解决的数学难题首次取得了进展。推动这项进展的是来自加州大学洛杉矶分校的研究生JamesLeng和麻省理工学院数学研究生AshwinSah、哥伦比亚大学助理教授MehtaabSawhney。其中JamesLeng师从著名数学家陶哲轩,AshwinSah师从离散数学大牛赵宇飞。论文地址:https://arxiv.org/pdf/2402.17995要了解这项研究取得的突破,需要从算术级数说起。等差数列的前n项和称为一个等差级数,也称为算术级数。1936年,数学家PaulErdő

如何注册LBank交易所? 如何注册LBank交易所? Aug 21, 2024 pm 02:20 PM

注册LBank访问官方网站并点击“注册”。输入电子邮件和密码并验证邮箱。下载LBank应用程序iOS:在AppStore中搜索“LBank”。下载并安装“LBank-DigitalAssetExchange”应用。Android:在GooglePlay商店中搜索“LBank”。下载并安装“LBank-DigitalAssetExchange”应用。

ai工具有哪些 ai工具有哪些 Nov 29, 2024 am 11:11 AM

ai工具有:豆包、ChatGPT、Gemini、BlenderBot等等。

给视频模型安上快慢两只眼睛,苹果免训练新方法秒了一切SOTA 给视频模型安上快慢两只眼睛,苹果免训练新方法秒了一切SOTA Aug 11, 2024 pm 04:02 PM

自从Sora发布以来,AI视频生成领域变得更加「热闹」了起来。过去几个月,我们见证了即梦、RunwayGen-3、LumaAI、快手可灵轮番炸场。和以往一眼就能识破是AI生成的模型不太一样,这批视频大模型可能是我们所见过的「最好的一届」。然而,视频大语言模型(LLM)惊艳表现的背后离不开庞大且经过精细标注的视频数据集,这需要花费相当高的成本。近期研究领域也涌现了一批无需额外训练的创新方法:采用训练好的图像大语言模型,直接用于视频任务的处理,这样就绕开了「昂贵」的训练过程。此外,现有大多视频LLM

投机采样会损失大语言模型的推理精度吗? 投机采样会损失大语言模型的推理精度吗? Aug 09, 2024 pm 01:09 PM

MitchellStern等人于2018年提出了投机采样的原型概念。这种方法后来被各种工作进一步发展和完善,包括LookaheadDecoding、REST、Medusa和EAGLE,投机采样显着加快了大型语言模型(LLM)的推理过程。一个重要的问题是:LLM中的投机采样会损害原始模型的准确性吗?先说答案:不会。标准的投机采样算法是无损的,本文将通过数学分析和实验来证明这一点。数学证明投机采样公式可以定义如下:其中:?是从均匀分布中采样的实数。是要预测的下一个token。 ?(?)是草稿模型给出的

See all articles