首页 科技周边 人工智能 Transformer本可以深谋远虑,但就是不做

Transformer本可以深谋远虑,但就是不做

Apr 22, 2024 pm 05:22 PM
理论

语言模型是否会规划未来 token?这篇论文给你答案。

「别让 Yann LeCun 看见了。」

Transformer本可以深谋远虑,但就是不做

Yann LeCun 表示太迟了,他已经看到了。今天要介绍的这篇 「LeCun 非要看」的论文探讨的问题是:Transformer 是深谋远虑的语言模型吗?当它在某个位置执行推理时,它会预先考虑后面的位置吗?

这项研究得出的结论是:Transformer 有能力这样做,但在实践中不会这样做。  

我们都知道,人类会思考而后言。十年的语言学研究表明:人类在使用语言时,内心会预测即将出现的语言输入、词或句子。

不同于人类,现在的语言模型在「说话」时会为每个 token 分配固定的计算量。那么我们不禁要问:语言模型会和人类一样预先性地思考吗?

根据最近的一些研究已经表明:可以通过探查语言模型的隐藏状态来预测下一 token。有趣的是,通过在模型隐藏状态上使用线性探针,可以在一定程度上预测模型在未来 token 上的输出,并且可以对未来输出进行可预测的修改。 近期的一些研究已经表明,可以通过探查语言模型的隐藏状态来预测下一 token。有趣的是,通过在模型隐藏状态上使用线性探针,可以在一定程度上预测模型在未来 token 上的输出,并且可以对未来输出进行可预测的修改。

这些发现表明在给定时间步骤的模型激活至少在一定程度上可以预测未来输出。

但是,我们还不清楚其原因:这只是数据的偶然属性,还是因为模型会刻意为未来时间步骤准备信息(但这会影响模型在当前位置的性能)?

为了解答这一问题,近日科罗拉多大学博尔德分校和康奈尔大学的三位研究者发布了一篇题为《语言模型是否会规划未来 token?》的论文。

Transformer本可以深谋远虑,但就是不做

论文标题:Do Language Models Plan for Future Tokens?

论文地址:https://arxiv.org/pdf/2404.00859.pdf  

研究概览

他们观察到,在训练期间的梯度既会为当前 token 位置的损失优化权重,也会为该序列后面的 token 进行优化。他们又进一步问:当前的 transformer 权重会以怎样的比例为当前 token 和未来 token 分配资源?

他们考虑了两种可能性:预缓存假设(pre-caching hypothesis)和面包屑假设(breadcrumbs hypothesis)。

Transformer本可以深谋远虑,但就是不做

预缓存假设是指 transformer 会在时间步骤 t 计算与当前时间步骤的推理任务无关但可能对未来时间步骤 t τ 有用的特征,而面包屑假设是指与时间步骤 t 最相关的特征已经等同于将在时间步骤 t τ 最有用的特征。

为了评估哪种假设是正确的,该团队提出了一种短视型训练方案(myopic training scheme),该方案不会将当前位置的损失的梯度传播给之前位置的隐藏状态。

对上述假设和方案的数学定义和理论描述请参阅原论文。

实验结果

为了了解语言模型是否可能直接实现预缓存,他们设计了一种合成场景,其中只能通过显式的预缓存完成任务。他们配置了一种任务,其中模型必须为下一 token 预先计算信息,否则就无法在一次单向通过中准确计算出正确答案。

Transformer本可以深谋远虑,但就是不做

                               该团队构建的合成数据集定义。

在这个合成场景中,该团队发现了明显的证据可以说明 transformer 可以学习预缓存。当基于 transformer 的序列模型必须预计算信息来最小化损失时,它们就会这样做。

之后,他们又探究了自然语言模型(预训练的 GPT-2 变体)是会展现出面包屑假设还是会展现出预缓存假设。他们的短视型训练方案实验表明在这种设置中,预缓存出现的情况少得多,因此结果更偏向于面包屑假设。

Transformer本可以深谋远虑,但就是不做

                                 基于 token 位置的原始 GPT-2 模型与短视型 GPT-2 模型的交叉熵损失及其差异。

Transformer本可以深谋远虑,但就是不做

                              GPT-2 通过原始和短视型训练获得的验证交叉熵损失。

于是该团队声称:在真实语言数据上,语言模型并不会在显着程度上准备用于未来的信息。相反,它们是计算对预测下一个 token 有用的特征 —— 事实证明这对未来的步骤也很有用。

Transformer本可以深谋远虑,但就是不做

该团队表示:「在语言数据中,我们观察到贪婪地针对下一token 损失进行优化与确保未来预测性能之间并不存在显着的权衡。」

因此我们大概可以看出来,Transformer 能否深谋远虑的问题似乎本质上是一个数据问题。

Transformer本可以深谋远虑,但就是不做

可以想象,也许未来我们能通过合适的数据整理方法让语言模型具备人类一样预先思考的能力。

以上是Transformer本可以深谋远虑,但就是不做的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

PRO | 为什么基于 MoE 的大模型更值得关注? PRO | 为什么基于 MoE 的大模型更值得关注? Aug 07, 2024 pm 07:08 PM

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles