目录
1.管理成本效益和可扩展性
2.多租户环境中的数据隐私
3.处理有状态模型部署
首页 科技周边 人工智能 云端部署大模型的三个秘密

云端部署大模型的三个秘密

Apr 24, 2024 pm 03:00 PM
语言模型 云端 llms 安全传输

云端部署大模型的三个秘密

编译 | 星璇

出品 | 51CTO技术栈(微信号:blog51cto)

在过去的两年里,我更多地参与了使用大型语言模型(LLMs)的生成AI项目,而非传统的系统。我开始怀念无服务器云计算。它们的应用范围广泛,从增强对话AI到为各行各业提供复杂的分析解决方案,以及其他许多功能。许多企业将这些模型部署在云平台上,因为公共云提供商已经提供了现成的生态系统,而且这是阻力最小的路径。然而,这并不便宜。

云还提供了其他好处,如可扩展性、效率和高级计算能力(按需提供GPU)。在公共云平台上部署LLM的过程有一些鲜为人知的秘密,它们可能会对成功或失败产生重大影响。也许是因为处理LLMs的AI专家并不多,也因为我们在这方面还没太多经验,我们的知识体系中存在很多空白。

让我们探讨三个在云上部署LLM时鲜为人知的“技巧”,也许你的AI工程师们也不知道。考虑到这些工程师的年薪往往超过30万美元,也许现在是时候考虑他们做这些事情的细节了。我看到每个人都像头发发着火一样奔向生成为AI,但犯的错误比以往任何时候都多。

1.管理成本效益和可扩展性

云平台部署LLMs的主要吸引力之一是能够够按需扩展资源。我们不需要成为优秀的容量规划师,因为云平台拥有我们只需要点击鼠标或自动分配的资源。

然而,等待,我们即将犯下当初使用云计算时犯下的同样错误。在扩展的同时管理成本是一项技能,许多人需要在这方面获得帮助以进行有效导航。请注意,云服务通常根据消耗的计算资源收费;他们就像公共事业一样运作。处理得越多,付费就越多。考虑到GPU的成本更高(且耗电量更大),这是使用公共云提供商提供的LLMs时的核心关注点。

请确保您使用成本管理工具,包括云平台提供的工具和可靠的第三方成本治理和监控服务商(finops)提供的工具。例如,实施自动扩展和调度、选择合适的实例类型或使用抢占式实例来优化成本。此外,请记得持续监控部署情况,根据使用情况而不是仅根据预测负载调整资源。这意味着不惜一切代价避免过度配置(明白我这里的双关了吗?)。

2.多租户环境中的数据隐私

部署LLMs通常涉及处理大量数据和训练经过的知识模型,这些可能包含敏感或专有数据。使用公共云的风险在于,你的“邻居”是以处理实例的形式存在,它们在同一物理硬件上运行。因此,公共云确实存储在这样的风险:在数据存储和处理过程中,数据可能会被公共云数据中心中同一物理硬件上运行的其他虚拟机访问。 为了解决这个问题,许多公共云提供商提供了面向企业的云安全选项。这些选项提供了物理硬件上运行的其他虚拟机访问你的数据的隔离和保护。 另一个安全问题是数据在存储和处理过程中的传输。数据可能会通过公共云网络传输,这意味着在传输过程中可能会被截取或窃听。为了解决这个问题,公共云通常提供了加密和安全传输协议来保护数据在传输过程中的安全性。 总的来说,部署LLMs

如果你询问公共云提供商有关此问题,他们会急忙拿出最新的PowerPoint演示文稿,展示这是不可能的。虽然这主要是真的,但并不完全准确。所有多租户系统都存在这种风险;你需要加以缓解。我发现,云提供商的规模越小,比如那些仅在单一国家运营的云提供商,这种问题出现的可能性就越大。这适用于数据存储和LLMs。

秘诀在于选择符合严格安全标准并能提供证明的云提供商:静止和传输中的数据加密、身份和访问管理(IAM)以及隔离策略。当然,更好的做法是你实施自己的安全策略和安全技术栈,以确保在云上使用多租户LLMs的风险较低。

3.处理有状态模型部署

大型语言模型(LLMs)大多数都是有状态的,这意味着它们会在一次交互到下一次交互之间保留信息。这个旧方法提供了新的好处:即在持续学习场景中提高效率的能力。然而,在云环境中管理这些模型的有状态性是有挑战性的,因为云环境中的实例可能是按设计短暂或无状态的。

支持有状态部署的编排工具(如 Kubernetes)是有帮助的。它们可以为大型语言模型利用持久性存储选项,并配置为跨会话维护和操作其状态。为了支持大型语言模型的连续性和性能,您需要这样做。

随着生成式人工智能的爆炸式增长,在云平台上部署大型语言模型已成定局。对于大多数企业来说,不使用云实在是太不方便了。我对接下来这股狂热的担忧是,我们会错过一些容易解决的问题,并会犯下巨大而昂贵的错误,而这些错误在最终大多是可以避免的。

想了解更多AIGC的内容,请访问:

51CTO AI.x社区

https://www.51cto.com/aigc/

以上是云端部署大模型的三个秘密的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文搞懂Tokenization! 一文搞懂Tokenization! Apr 12, 2024 pm 02:31 PM

语言模型是对文本进行推理的,文本通常是字符串形式,但模型的输入只能是数字,因此需要将文本转换成数字形式。Tokenization是自然语言处理的基本任务,根据特定需求能够把一段连续的文本序列(如句子、段落等)切分为一个字符序列(如单词、短语、字符、标点等多个单元),其中的单元称为token或词语。根据下图所示的具体流程,首先将文本句子切分成一个个单元,然后将单元素数值化(映射为向量),再将这些向量输入到模型进行编码,最后输出到下游任务进一步得到最终的结果。文本切分按照文本切分的粒度可以将Toke

如何使用Vue进行数据加密和安全传输 如何使用Vue进行数据加密和安全传输 Aug 02, 2023 pm 02:58 PM

如何使用Vue进行数据加密和安全传输引言:随着互联网的发展,数据的安全性越来越受到重视。在Web应用程序开发中,数据加密和安全传输是保护用户隐私和敏感信息的重要手段。Vue作为一种流行的JavaScript框架,提供了丰富的工具和插件,可以帮助我们实现数据加密和安全传输。本文将介绍如何使用Vue进行数据加密和安全传输,并提供代码示例供参考。一、数据加密数据加

大规模语言模型高效参数微调--BitFit/Prefix/Prompt 微调系列 大规模语言模型高效参数微调--BitFit/Prefix/Prompt 微调系列 Oct 07, 2023 pm 12:13 PM

2018年谷歌发布了BERT,一经面世便一举击败11个NLP任务的State-of-the-art(Sota)结果,成为了NLP界新的里程碑;BERT的结构如下图所示,左边是BERT模型预训练过程,右边是对于具体任务的微调过程。其中,微调阶段是后续用于一些下游任务的时候进行微调,例如:文本分类,词性标注,问答系统等,BERT无需调整结构就可以在不同的任务上进行微调。通过”预训练语言模型+下游任务微调”的任务设计,带来了强大的模型效果。从此,“预训练语言模型+下游任务微调”便成为了NLP领域主流训

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

云端部署大模型的三个秘密 云端部署大模型的三个秘密 Apr 24, 2024 pm 03:00 PM

编译|星璇出品|51CTO技术栈(微信号:blog51cto)在过去的两年里,我更多地参与了使用大型语言模型(LLMs)的生成AI项目,而非传统的系统。我开始怀念无服务器云计算。它们的应用范围广泛,从增强对话AI到为各行各业提供复杂的分析解决方案,以及其他许多功能。许多企业将这些模型部署在云平台上,因为公共云提供商已经提供了现成的生态系统,而且这是阻力最小的路径。然而,这并不便宜。云还提供了其他好处,如可扩展性、效率和高级计算能力(按需提供GPU)。在公共云平台上部署LLM的过程有一些鲜为人知的

RoSA: 一种高效微调大模型参数的新方法 RoSA: 一种高效微调大模型参数的新方法 Jan 18, 2024 pm 05:27 PM

随着语言模型扩展到前所未有的规模,对下游任务进行全面微调变得十分昂贵。为了解决这个问题,研究人员开始关注并采用PEFT方法。PEFT方法的主要思想是将微调的范围限制在一小部分参数上,以降低计算成本,同时仍能实现自然语言理解任务的最先进性能。通过这种方式,研究人员能够在保持高性能的同时,节省计算资源,为自然语言处理领域带来新的研究热点。RoSA是一种新的PEFT技术,通过在一组基准测试的实验中,发现在使用相同参数预算的情况下,RoSA表现出优于先前的低秩自适应(LoRA)和纯稀疏微调方法。本文将深

一文读懂大型语言模型微调技术挑战与优化策略 一文读懂大型语言模型微调技术挑战与优化策略 Mar 20, 2024 pm 11:01 PM

大家好,我是Luga。今天我们将继续探讨人工智能生态领域中的技术,特别是LLMFine-Tuning。本文将继续深入剖析LLMFine-Tuning技术,帮助大家更好地理解其实现机制,以便更好地应用于市场开发和其他领域。LLMs(LargeLanguageModels)正在引领人工智能技术的新浪潮。这种先进的AI通过利用统计模型分析海量数据,学习单词和词组之间的复杂模式,从而模拟人类认知和语言能力。LLMs的强大功能已引起了众多头部企业以及科技爱好者的浓厚兴趣,他们纷纷竞相采用这些由人工智能驱动

顺手训了一个史上超大ViT?Google升级视觉语言模型PaLI:支持100 种语言 顺手训了一个史上超大ViT?Google升级视觉语言模型PaLI:支持100 种语言 Apr 12, 2023 am 09:31 AM

近几年自然语言处理的进展很大程度上都来自于大规模语言模型,每次发布的新模型都将参数量、训练数据量推向新高,同时也会对现有基准排行进行一次屠榜!比如今年4月,Google发布5400亿参数的语言模型PaLM(Pathways Language Model)在语言和推理类的一系列测评中成功超越人类,尤其是在few-shot小样本学习场景下的优异性能,也让PaLM被认为是下一代语言模型的发展方向。同理,视觉语言模型其实也是大力出奇迹,可以通过提升模型的规模来提升性能。当然了,如果只是多任务的视觉语言模

See all articles