首页 科技周边 人工智能 跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

May 03, 2024 pm 01:04 PM
git 工程 陶哲轩 费马大定理

在陶哲轩的启发下,越来越多的数学家开始尝试利用人工智能进行数学探索。这次,他们瞄准的目标是世界十大最顶尖数学难题之一的费马大定理。费马大定理是一个非常复杂的数学难题,迄今为止尚未找到可行的解法。数学家们希望借助人工智能的强大计算能力和智能算法,能够在数学探索

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

费马大定理又被称为“费马最后的定理(Fermat's Last Theorem,FLT)”,由17世纪法国数学家皮耶・德・费马提出。它背后有一个传奇的故事。据称,大约在1637年左右,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次幂的幂分成两个同次幂之和,这是不可能的。”关于此,我确信已经发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下了。”

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

这段话前面所表述的就是费马大定理的内容:当整数 n>2 时,关于 x^n y^n=z^n 的方程没有正整数解。

费马表示,自己知道怎么证明,但因为书的空白部分太小,就没写。对于该故事的真实性以及费马是否真的想出了证明方法,后世是存有争议的。

在之后的300多年里,数学家们一直在努力,接力证明费马大定理。直到1995年,美国普林斯顿大学的Andrew Wiles教授经过8年的孤军奋战,终于用130页长的篇幅完成了证明。Wiles也成为整个数学界的英雄。

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

既然费马大定理已经被证明了,数学家还能用 AI 做什么呢?答案是:形式化它的证明。

数学的形式化通常指的是使用严格的形式语言(如逻辑和集合论)来表述数学对象、结构、定理和证明,使其能够在计算机上进行表示、验证和操作,从而保证数学内容的准确性和一致性。形式化数学的发展可以追溯到19世纪末和20世纪初,而现代的形式化数学则始于20世纪的数理逻辑和计算机科学的发展。 形式化数学的主要目标是建立一套形式系统,其中包括一组符号、一组基本公理和一组推理规则,通过这些规则和公理的运用,可以进行

去年年底,陶哲轩等人曾用 Lean(一款交互式定理证明器,也是一门编程语言)形式化了他们的一篇论文。这篇论文是对多项式 Freiman-Ruzsa 猜想的一个版本的证明,于去年 11 月发布在 arXiv 上。在编写 Lean 语言代码的时候,陶哲轩还借助了 AI 编程助手 Copilot。该事件引起数学界和人工智能界的广泛关注。

当时,Lean 技术开源社区最重要的推广者、伦敦帝国理工学院的 Kevin Buzzard 表示:「从根本上来说,显而易见的是,当你将某些东西数字化时,你就可以以新的方式使用它。我们将把数学数字化,这会让数学变得更好。」

这位 Buzzard 教授,就是最近宣称要形式化费马大定理证明的数学家,他所用的工具也是 Lean。

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

在一篇博客中,他介绍了自己做这件事情的背景、动机以及具体的做法。

为什么要形式化费马大定理的证明?

费马大定理的形式非常简洁、直观,然而证明它却异常艰难。这无疑是对数学深邃之美的一次绝佳展示。在过去的几个世纪中,为了解决这个问题,数学家们发展和创新了大量数学理论,这些理论在密码学到物理学等多个领域都有所应用。

Andrew Wiles 可能因 FLT 而受到启发,但他的工作实际上为朗兰兹计划带来了突破,该计划是数学中一系列影响深远的构想,联系数论、代数几何与约化群表示理论,且在 2024 年依然备受关注。

历史上,代数数论的其他几个重大突破(例如数域中的因式分解理论和循环域的算术)至少部分是出于对 FLT 更深层次理解的渴望。

Wiles 的工作,由他的学生 Richard Taylor 一起补充完整,建立在 20 世纪数学的庞大基础之上。Wiles 引入的基本技术 ——「模性提升定理(modularity lifting theorem)」—— 在原始论文发表后的 30 年间,在概念上被极大简化和广泛推广。这一领域至今仍然非常活跃。Frank Calegari 在 2022 年国际数学家大会上的论文,概述了自 Wiles 突破以来的进展(参见:https://arxiv.org/abs/2109.14145)。Kevin Buzzard 表示,这一领域的持续活跃,是他将 FLT 证明形式化的动机之一。

数学的形式化,即将纸上的数学转换为能够理解定理和证明概念的计算机编程语言的艺术。这些编程语言,也称为交互式定理证明器(ITP),已经存在了数十年。然而,近年来,这一领域似乎吸引了数学界的一部分关注。我们已经见证了多个研究数学形式化的例子,其中最新的是陶哲轩等人对多项式 Freiman—Ruzsa 猜想证明的形式化。这篇 2023 年的突破性论文在短短三周内就在 Lean 中完成了形式化。这样的成功案例可能会让旁观者认为,像 Lean 这样的 ITP 现在已经准备好形式化所有现代数学了。

然而,真相远非如此简单。在数学的某些领域,例如组合学,我们可以看到一些现代突破可以实时形式化。然而,Buzzard 表示,他定期参加伦敦数论研讨会,经常注意到 Lean 对现代数学定义的了解还不足以表述研讨会上宣布的结果,更不用说验证它们的证明了。

事实上,数论在这一方面的「滞后」是 Buzzard 启动 FLT 当代证明形式化的主要动机之一。在项目完成之前,Lean 将能够理解自守形式(一类特别的复变量函数)和表示、伽罗瓦表示、潜在自守性、模性提升定理、代数簇的算术、类域论、算术对偶定理、志村簇等现代代数数论中使用的概念。在 Buzzard 看来,有了这些做基础,将他自己专业领域正在发生的事情形式化将不再是科幻小说。

那么,为什么要这么做呢?Buzzard 解释说,「如果我们相信一些计算机科学家的话,人工智能的指数级增长终将使计算机能够帮助数学家进行研究。这样的工作可以帮助计算机理解我们在现代数学研究中正在做的事情。」

项目如何开展?  

费马大定理的形式化项目现已启动。Buzzard 在一幅图中展示了当前的进展。

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

感兴趣的研究者可以阅读详情:https://imperialcollegelondon.github.io/FLT/blueprint/dep_graph_document.html

该项目由 EPSRC 资助,Buzzard 将获得前五年的资金支持。在此期间,他的第一个目标是将 FLT 简化为 1980 年代末数学家已知的声明。

当然,Buzzard 没有打算独自完成这件事情。他表示,对于有些论证的部分,他理解其基本原则,但从未仔细检查过细节。而且,朗兰兹计划还引入了一些重要的东西,包括 GL_2 的循环基变换以及 Jacquet-Langlands。对于这些深奥的东西,他的理解还不够深。

不过,这恰恰是形式化项目的优势所在。Buzzard 将能够在 Lean 中明确表述他需要的结果,并将它们传递给其他人。这个系统的美妙之处在于:你不必理解 FLT 的整个证明就能做出贡献。上面的图将证明分解为许多小引理,因此非常方便进行众包操作。如果你能形式化证明其中任何一个引理,那么 Buzzard 会热切期待你的拉取请求。

想要参与项目的人需要了解一些关于 Lean 的知识。对此,Buzzard 推荐了在线教科书 Mathematics in Lean。

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

教科书链接:https://leanprover-community.github.io/mathematics_in_lean/

该项目将在 Lean Zulip chat 的 FLT  stream 上进行,这是一个强大的研究论坛,数学家和计算机科学家可以实时协作,轻松地发布代码和数学,使用线程和 stream 系统,有效地支持多场独立对话同时进行。

跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明

Lean Zulip chat 链接:https://leanprover.zulipchat.com/

Buzzard 表示,他对这个项目将需要多长时间没有任何预感,但他绝对乐观。

与此同时,像 Lean 这类形式化证明工具也在不断迭代。相比初代 Lean,现在最新的 Lean 4 版本进行了多项优化,包括更快的编译器、改进的错误处理和更好的与外部工具集成的能力等。

去年年底,开放平台 LeanDojo 团队和加州理工学院的研究者还推出了 Lean Copilot,这是一款专为大型语言模型与人类交互而设计的协作工具,为数学研究注入了 AI 大模型的力量。

「我预计,如果使用得当,到 2026 年,AI 将成为数学研究和许多其他领域值得信赖的合著者。」陶哲轩在之前的一篇博客中说道。

希望陶哲轩的预言早日成真。

相关阅读:

参考链接:https://leanprover.zulipchat.com/#narrow/stream/416277-FLT

https://mp.weixin.qq.com/s/d9RSkRhlKH5ZMek3yTqe4Q

以上是跨越300多年的接力:受陶哲轩启发,数学家决定用AI形式化费马大定理的证明的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Go语言中用于浮点数运算的库有哪些? Go语言中用于浮点数运算的库有哪些? Apr 02, 2025 pm 02:06 PM

Go语言中用于浮点数运算的库介绍在Go语言(也称为Golang)中,进行浮点数的加减乘除运算时,如何确保精度是�...

Gitee Pages静态网站部署失败:单个文件404错误如何排查和解决? Gitee Pages静态网站部署失败:单个文件404错误如何排查和解决? Apr 04, 2025 pm 11:54 PM

GiteePages静态网站部署失败:404错误排查与解决在使用Gitee...

h5项目怎么运行 h5项目怎么运行 Apr 06, 2025 pm 12:21 PM

运行 H5 项目需要以下步骤:安装 Web 服务器、Node.js、开发工具等必要工具。搭建开发环境,创建项目文件夹、初始化项目、编写代码。启动开发服务器,使用命令行运行命令。在浏览器中预览项目,输入开发服务器 URL。发布项目,优化代码、部署项目、设置 Web 服务器配置。

Go语言中哪些库是由大公司开发或知名的开源项目提供的? Go语言中哪些库是由大公司开发或知名的开源项目提供的? Apr 02, 2025 pm 04:12 PM

Go语言中哪些库是大公司开发或知名开源项目?在使用Go语言进行编程时,开发者常常会遇到一些常见的需求,�...

Beego ORM中如何指定模型关联的数据库? Beego ORM中如何指定模型关联的数据库? Apr 02, 2025 pm 03:54 PM

在BeegoORM框架下,如何指定模型关联的数据库?许多Beego项目需要同时操作多个数据库。当使用Beego...

在Go语言中使用Redis Stream实现消息队列时,如何解决user_id类型转换问题? 在Go语言中使用Redis Stream实现消息队列时,如何解决user_id类型转换问题? Apr 02, 2025 pm 04:54 PM

Go语言中使用RedisStream实现消息队列时类型转换问题在使用Go语言与Redis...

H5页面制作是否需要持续维护 H5页面制作是否需要持续维护 Apr 05, 2025 pm 11:27 PM

H5页面需要持续维护,这是因为代码漏洞、浏览器兼容性、性能优化、安全更新和用户体验提升等因素。有效维护的方法包括建立完善的测试体系、使用版本控制工具、定期监控页面性能、收集用户反馈和制定维护计划。

如何获取海外版的发货地区数据?有哪些现成的资源可以使用? 如何获取海外版的发货地区数据?有哪些现成的资源可以使用? Apr 01, 2025 am 08:15 AM

问题介绍:如何获取海外版的发货地区数据?是否有现成的资源可以使用?在跨境电商或全球化业务中,获取准...

See all articles