开学一个月,已经多次梦见笔试出现数据结构算法题,我对数据结构的恐惧已经多于任何“妖魔鬼怪”了。呵呵,看来真的很有必要复习一下常用的数据结构,免得“噩梦”成真。
数据机构等编程基础的重要性不用多说,直接进入正题。
排序算法,分为内部排序和外部排序。内部排序要使用内存,这里只探讨内部排序。
1,插入排序:直接插入排序和希尔排序
2,选择排序:简单选择排序和堆排序
3,交换排序:冒泡排序和快速排序
4,归并排序
5,基数排序
直接插入排序
基本思想:在要排序的一组数,假设前面(n-1)[n>=2]个数已经是排好顺序的,先要把第n个数插入到前面的有序数,使得这n个数也是排好顺序的。如此反复循环,知道全部排好顺序。
希尔排序
基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序的个数)分成若干组,每组中记录的下标相差d。对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
简单选择排序
基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换,然后剩下的数当中找出最小的与第二个位置的数交换,如此寻哈un到倒数第二个数和最后一个数为止。
堆排序
基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi
冒泡排序
基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
快速排序
基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
归并排序
基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
基数排序
基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
代码演示地址:http://lovermap.sinaapp.com/test/sort.html
现在我们分析一下8种排序算法的稳定性。
(请网友结合前面的排序基本思想来理解排序的稳定性(8种排序的基本思想已经在前面说过,这里不再赘述)不然可能有些模糊)
(1)直接插入排序:一般插入排序,比较是从有序序列的最后一个元素开始,如果比它大则直接插入在其后面,否则一直往前比。如果找到一个和插入元素相等的,那么就插入到这个相等元素的后面。插入排序是稳定的。
(2)希尔排序:希尔排序是按照不同步长对元素进行插入排序,一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,稳定性就会被破坏,所以希尔排序不稳定。
(3)简单选择排序:在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。光说可能有点模糊,来看个小实例:858410,第一遍扫描,第1个元素8会和4交换,那么原序列中2个8的相对前后顺序和原序列不一致了,所以选择排序不稳定。
(4)堆排序:堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, ...这些父节点选择元素时,有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,所以堆排序并不稳定。
(5)冒泡排序:由前面的内容可知,冒泡排序是相邻的两个元素比较,交换也发生在这两个元素之间,如果两个元素相等,不用交换。所以冒泡排序稳定。
(6)快速排序:在中枢元素和序列中一个元素交换的时候,很有可能把前面的元素的稳定性打乱。还是看一个小实例:6 4 4 5 4 7 8 9,第一趟排序,中枢元素6和第三个4交换就会把元素4的原序列破坏,所以快速排序不稳定。
(7)归并排序:在分解的子列中,有1个或2个元素时,1个元素不会交换,2个元素如果大小相等也不会交换。在序列合并的过程中,如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,所以,归并排序也是稳定的。
(8)基数排序:是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。
8种排序的分类,稳定性,时间复杂度和空间复杂度总结:
以上所述就是本文的全部内容了,希望大家能够喜欢。